
www.manaraa.com

www.manaraa.com

Computer Systems and Software Engineering

www.manaraa.com

Computer Systems
and
Software Engineering
State-of-the-art

Edited by

Patrick Dewilde
Technische Universiteit Delft

and

Joos Vandewalle
Katholieke Universiteit Leuven

SPRINGER SCIENCE+BUSINESS MEDIA, B.V.

www.manaraa.com

ISBN 978-1-4613-6555-6 ISBN 978-1-4615-3506-5 (eBook)
DOI 10.1007/978-1-4615-3506-5

Printed оп acid-free paper

АН Rights Reserved
© 1992 Springer Science+Business Media Dordrecht
Originally published Ьу К1uwer Academic Publishers in 1992
Softcover reprint of the hardcover 1 st edition 1992

No part of the materia1 protected Ьу this copyright notice mау ье reproduced or
uti1ized in any form or Ьу any means, electronic or mechanical,
including photocopying, recording or Ьу any information storage and
retrieval system, without written permission from the copyright owner.

www.manaraa.com

TABLE OF CONTENTS

EDITORIAL

The Evolution of Data Memory and Storage: An Overview
Walter E. Proebster

Optimizing Logic for Speed, Size, and Testability

vii

Robert K. Brayton and Alexander Saldanha 25

VLSI Architectures for Digital Video Signal Processing
P. Pirsch 65

Compiler Techniques for Massive Parallel Architectures
Lothar Thiele 101

Programmable Cellular Neural Networks. A State-of-the-art
Tamas Roska 151

Developments in Parallel Programming Languages
R. H. Perrott 169

Load Balancing Grid-Oriented Applications on Distributed Memory Parallel
Computers

D. Roose, J. de Keyser and R. van Driessche 191

Strategic Decision Analysis and Group Decision Support
Simon French 217

Ten Years of Advances in Machine Learning
Y. KodratoJf 231

Designing Logic Programming Languages
J. W. Lloyd 263

Efficient Bottom-up Evaluation of Logic Programs
Raghu Ramakrishnan, Divesh Srivastava and S. Sudarshan 287

Proving Correctness of Executable Programs
Kit Lester 325

www.manaraa.com

vi

Direct Manipulation as a Basis for Constructing Graphical User Interfaces Coupled
to Application Functions

Jan van den Bos 355

Visualization of Volumetric Medical Image Data
KJ. Zuiderveld and M.A. Viergever 363

Scientific Visualization
JJ. van Wijk 387

Picture Archiving and Communication Systems: A Service
R. Mattheus 397

www.manaraa.com

February 17, 1992

Editorial: the State of the Art in Computer Science and Software
Engineering

At the occasion of the CompEuro'92 Conference in The Hague this spring, we have
asked an editorial board consisting of some twelve reputed researchers in computer
system design and software engineering in the Benelux to assemble a program of
State of the Art lectures covering their entire domain, and in which up to date
information would be presented to practicing engineers and researchers who are
active in the field and have a need to know. We are proud to present the results
of our combined efforts in this book. We truly believe that we have succeeded in
our goal and that the present book offers the broad overview we aimed at with
contributions that treat all the main topics with elegance and clarity. In addition
to State of the Art lectures, also some tutorial as well as keynote lectures have
been added, all with the purpose of providing the global coverage desired.

The order in which the topics are presented goes roughly from bottom to top,
from low level hardw'are issues to high level intelligence, from computing to appli
cations. Although many topics are incommensurate, we have opted for the more
specific first, the more general later, without any presumption. The first lecture
is just as valuable as the last: the topics rise in a kind of spiral. There is an un
deniable randomness in the choice, the reader will find important and interesting
topics from the first to the last contribution.

We start out with some survey material. W. Proebster gives a knowledgeable
survey of the history of memory management and technology. As a long standing
IBM scientist (who is now with the University of Munich), he has had an insider's
view on the many developments of memory technology. His conclusion is that the
sky is the limit and much more will be forthcoming. The second contribution is also
from an outstanding IBM design scientist who is now a Professor at the University
of California at Berkeley, Bob Brayton. His topic is, of course, logic design, but
with a new view on optimization. Since this is one of the main themes in sound
design technology, a. fresh view on it is particularly welcome. The contribution of
Peter Pirsch remains in the realm of hardware design, in particular the design of
video signal processing algorithms and architectures. Peter's group in Hannover
was one of the very first to study and implement sophisticated high speed' ded
icated computing systems. He instructs us on how to a.chieve optimization in a
global design space in which software, algorithms and architectures interplay. The
last contribution on hardware design is due to Lothar Thiele of the University of
Saarland in Saarbruecken. Lothar is also very much concerned about the connec
tion of algorithms and architectures, especially in the area of massive but nearly
regular or piecewise regular computations. He presents a systematic methodology
for the design trajectory that carries the designer from concept to architectural
description, all within one framework.

vii

P. Dewilde and J. Vandewalle (eds.). Computer Systems and Software engineering. vii-ix.
© 1992 Kluwer Academic Publishers.

www.manaraa.com

viii EDITORIAL

Moving one level upwards, or if you wish, one spiral turn further, we reach three
papers that carry the central term 'parallelism'. The first in the series is devoted
to a type of neural networks called cellular neural nets, which may be viewed
as a locally distributed neural computer. It yields the promise of a much larger
array than possible with the classical multilayer type. The two following papers
cover two most important issues in parallel processing: that of programming and
that of load-balancing. R. H. Perrott reviews in his paper the various possibili
ties in parallel programming languages and how they have developed. In contrast
to sequential computing where a single underlying architectural model, the von
Neumann machine, is often tacitly assumed, there are many possible architectural
models available for parallel computing. Is unity in variety possible? That is the
question addressed by Perrot. The paper of Dirk Roose and coauthors brings us
back to the theme 'operations research', in their paper dedicated to parallel com
puting on distributed memory parallel computers. There could possibly not be
a more central paper in this conference since it merges two of the three central
themes. Therefore, it a.ppears in the center of the book as well ...

The following paper has also a central quality but of a different nature. It
brings us another turn further on our high winding spiral. Operations research
has very much to do with strategic decision analysis. Decisions are not taken in a
vacuum, they originate from group dynamics in a management team. Simon French
approaches these issues from an information systems background. It is refreshing
to see how on a macroscopic field problems arise that are similar to those on the
much more restricted field of software engineering, and how these problems may
be approached in an analogous ~ay.

This brings us to one of the central themes in software engineering: reasoning
and logic programming. Three lectures are devoted to that topic. The first, by Y.
Kodratoff gives a survey of ten years of advances in machine learning. Methods for
machine learning are built on three kinds of possible inferences: deductive, induc
tive and analogical. Kodratoff describes different methods that have been created
during the last decade to improve the way machines can learn, using these infer
ence techniques. In the second paper, J.W. Lloyd of the University of Bristol dives
directly into issues of the design of logic programming languages, their declarative
semantics and the software engineering support needed for them. Raghu Ramakr
ishnan and coauthors treat in their contribution the evaluation problem of logic
programs. Here also, optimization is a key issue, efficiency of computations, mem
ory utilization, improvement of query handling.

Engineering nowadays requires more than hard nosed i'rule of the thumbi'-ing.
Already we have seen that mathematical principles underlie modern principles of
declarative parallel programming. Modern signal processing is based on sophis
ticated functional analysis. The construction of a high speed, high density VLSI
computing system is not possible without the use of highly optimized circuit con
struction software which again is based on deep insights in combinational math
ematics. So what about software engineering? Kit Lester states our methods of

www.manaraa.com

EDITORIAL ix

software construction are mainly intuitive and generally have an air of "string
and chewing gum" construction. If we are truly to Engineer programs, we instead
need mathematically-based methods either of constructing the programs, or of ver
ifying intuitively-constructed programs. In his paper he treats not only correctness
of program source code or program specification, but goes further and takes the
discussion all the way to the executable program.

The next-to-last three papers in this volume are devoted to a topic for which
a complete State of the Art book could be produced: visualization. At the sys
tem's level there is the question of how an application designer could construct
a man-machine interface. Jan van den Bos of the Erasmus University in Rotter
dam presents a system that allows designers to construct the essential parts of a
graphical men-computer interface, the presentation, the dynamic aspects and the
coupling to application functions. A beautiful application of visualization princi
ples is offered by volumetric medical image data representation. The state of the
art in that field is presented by Zuiderveld and Viergever, who pay special atten
tion to strategies that improve image generation speed. Techniques to improve the
quality of the image are also covered in that paper. J.J. van Wijk of ECN closes the
sequence of papers on visualization and gives an overview of methods by which the
results oflarge scale simulations and measurements can be presented. The division
of the visualization process in different steps, the interaction with the user, the use
of hardware and the different software possibilities are all considered.

The closing paper is in another direction of application and treats an important
problem in medical informatics: that of picture archiving and its connection to
communication. The sheer mass of information, the need to store it in an accessible
way, and the necessity to communicate that information induce a discipline in
its own right which is surveyed by Rudy Mattheus of the Hospital of the Free
University of Brussels.

The editorial board for this book consisted of the following persons: E. Aarts
and F. Lootsma (Optimization and Operations Research), P. Vitanyi (Theory of
Computing), H. Sips (Parallel Processing), L. De Raedt and Y. Willems (Machine
Learning and Knowledge Acquisition), J. ter Bekke (Databases), A. Bultheel and
B. De Moor (Numerical Mathematics), M. Bruynooghe (Computational Logic), M.
De Soete (Data Security), F.W. Jansen (Computer Graphics), J. van Katwijk and
K. De Vlaminck (Software Engineering and Compiler Construction), P. Suetens
(Medical Computing and Imaging). Our thanks go to all of them, for helping us
out in selecting lecturers, for advising us on the program and for requesting the
contributions. Our very warm thanks go to all the authors who have written such
beautiful papers and are introducing us so effectively to the State of the Art in
Computer Systems and Software Engineering.

Delft, January 1992
Patrick Dewilde and Joos Vandewalle.

www.manaraa.com

The Evolution of Data Memory and Storage: An Overview
Walter E. Proebster

Technische Universitiit Munchen,
Institut fur Informatik, Orleansstr. 34, Munchen, Germany

Abstract. An overview is given on the development history of the key technologies of data
memory and storage. For each of them the essential characteristics for their application in computer
systems and also their relation to competing - preceeding or replacing - technologies is described.
Comparisons of characteristic values of speed and packaging densities along with a list of historical
milestones are added. As a conclusion this overview extending over many decades shows that the
progress of this field, which is of dominating importance for system design and application, has not
yet reached saturation of progress now and for many years to come.

1. The Role of Data Memory and Storage

From the very beginning of data processing, data memory and storage has
always played a dominant role in the architecture, the design, the implementation
and the operation of data processing systems, be it that we regard a system of the
historical past, of the early times of electronic computers, or of our times.

The economic importance of data memory and storage is substantial: Almost
one third of the world-wide yearly production value of the total systems hardware
is devoted to this sector. The demand of computer users for more data memory
and storage at improved cost/performance can still not be satisfied, even with the
enormous investments in research, development and industry in the past decades
and today.

The term "memory" is used for random access devices, such as semiconductor
memories, the term "storage" for sequential access devices, mostly electromechan
ical devices such as disc and tape storage. For reasons of simplification, the term
"memory" will be mostly used in the following for both classes.

2. Characterization, Storage and Memory hierarchy

Memory and storage units can be characterized mainly by the following three
criteria:

capacity, in bits, Bytes, kBytes(103 Bytes), MBytes (106 Bytes), GigaBytes
(109 Bytes), TeraBytes (1012 Bytes),
access and cycle time of a memory/storage cell for writing or reading its
content.
cost or price related to bits.

P. Dewilde and J. Vandewalle (eds.), Computer Systems and Software Engineering, 1-23.
© 1992 Kluwer Academic Publishers.

www.manaraa.com

2 W.E. PROEBSTER

The large variety of memory technologies naturally leads to enonnous differ
ences of capacities, speeds and cost. These differences, to a large extent, influence
and determine the application of the various memory classes within a dataprocess
ing system and, most important, its proper structure:

For fast memories, the costs per bit are high; as a consequence, only small
capacities can be realized economically. In contrast, slow memories generally
offer low costs per bit and therefore allow the realization of large capacities. These
considerations lead to different memory levels embedded in a hierarchical structure:
fast memories for registers and smaller buffers (caches), slower random access
devices for main memories, fast sequential access devices for back-up storage,
slow ones for archival storage.

Based on the voluminous literature, one can state without exaggeration that
almost all fields of electrotechnology, physics, chemistry and material science have
been examined for suitable memory phenomena. Due to the great importance of
memory for data processing, physicists, engineers in research, development and
industry have been engaged for many decades now to explore, realize and improve
new ways and methods of storing data.

3. Memory Evolution and Impacts on
and from other technical Disciplines

Figure I shows an overview of the most important and interesting memory
technologies, the time of their conception, their peak of application and partly also
the time of their replacement by other, superior technologies.

There are 5 time periods to be distinguished:

1. From ancient times to the end of medieval times with mechanical devices.

2. The time of electromechanical devices up to about 1950.

3. The period of pioneer computers - Zuse, ENIAC, Princeton: lAS - where
communication technology provided valuable components for the construction
of computer memories such as relays, cross-bar switches, etc.

4. The time of maturity of data processing systems, where reciprocally strong
positive impulses were exercised from computer memory technology to com
munication technology leading e.g. to electronic telephone exchanges.

5. Our present time, where computer memories profit considerably from devel
opments of the entertainment industry such as the compact disc: CD and the
digital audio tape: DAT technology.

www.manaraa.com

THE EVOLUTION OF DATA MEMORY AND STORAGE

Register

Cash

Main
Memories

Backup
Storage

Archival
Storage

1600

...•....•. 1 I Transistor 4 .. ·~pl~;~·g

~~---J

,.;=c===' ==;.-.. ;= "".1..-.. - -------.---;-.-........ -- -.-.. -; -.
IPelay i I Tunnel- 9 I.

...... __ J.. ____ .

tiLine II Diode!

__________ ._ II CRT
B

. -lirl, l~iy&netic- .I_~t _______ ! __ ~
I Dru~,. Memory 1 ". 1 13 ! 14 ., , . ,FET lCMOS

i 1 FerriteCore I 12 i 1

'-------·--·i-·-- u;drrC:.:D:.:.ci~:.:c __ ·_--+-+'--;==16==;;;;=l=====!=

IpunchedTa~e 15 1 I cD;:;.iS;:::ke:.::t.::.;:tec...1-+-__ r===!==

' .. ---.;.----·-----+--·-rM=a=g=nl=t=ic=ra=p=e==ko ===d==£==$~

I: Punched Card i
19

11970 i1980

Impact by
entertainment
technology

i1990
!

Fig. 1. Overview of historical evolution of the major memory and storage
technologies

3

For all replacement processes of new technologies against established ones it
can be observed that the only real chance of success of any new technology lies
in offering substantial and not just incremental improvements over the established
technology. Effects impeding or retarding the replacement process are: confidence
in the established technology, human expertise, process methods of development
and manufacturing, risks of the new technology: unknown technical problems,
''Not invented here" (NllI), high investments in manufacturing, and, last but not
least, problems of compatibility of hardware and software of new technology with
the established one.

Due to these problems, many new approaches which looked promising in the
beginning did not or not yet succeed despite of many years of intense research
and development efforts, e.g. ferroelectric memories, superconducting memories,
multivalued memories, biological storage which will not be treated in the following.

A great number of milestones exists for data memory and storage, some of
the important ones are shown in Fig.2. A number of them will be discussed in
the next sections.

www.manaraa.com

4 W.E. PROEBSTER

1350 Use of pins in cylindrical drums (mechanical drum storage) for the cootrol of chimes and musical
mechanisms.

1728 The French mechanic Falcoo employs wooden boards cootaining holes at certain places for initiating control
fuDctions in looms.

1805 10seph-Marie lacquard use. big cardboards with holes for the control of the looms later to be named after
him.

1870 Wheatstone prinls the output of transmitted morse signs on paper strips.

1882 Herman Hollerith starts working with punch card machines. The punch cards have initially 12 lines and 20
columns.

1890 Electromechanical counters working on a decimal basis are used for the storage of data. AB a general rule, a
decimal unit was made up as replaceable element.

1900 Western Union (USA) develops a 5-track teleprinter paper strip with punch and reader devices.

1901 Ch. Maurain describes the magnetical characteristics of thin iron layers.

1919 W.H Eccles and F.W. 10rdan develop a bistable switching element with two electronic tubes (now called
flip-lIop).

1928 P1Ieumer of Dresden, Germany, obtains a patent on his magnetic tape storage.

1933 O. Tauscbek of Vienna, Austria, applies for a patent on cylindrical storage.

1937 K. Zuse develop. an electromagnetical binary storage unit. It consists of two layers of crossed, thin metal
plates and metal pins at the crossing points, each of which can be placed in two positioos.

1937 Punched paper tapes are introduced as data- and program storage medium in computers.

1938 K. Zuse, without prior koowledge of H. Aiken'. work, uses relays as storage elements.

1943 Dirks sen. and jun. develop the coocept of today' s drum storage.

1946 Electron tube 1Iip-llops are first used in the ENIAC-<Xlmputer by I.P. Eckert and I.W. Mauchly.

1946 First magnetic drum storage units developed by Booth at Birkbeck College, London. and by Billing at Max
Planck Institut, G&tingen.

1947 F.C. Wtlliams (Manchester) develops a method for storage of binary values on the screen of a cotbode ray
tube. Cycle time 8ILs, 1024 hits per access.

1947 Mercury delay line storage is introduced for fast memories in computers.

1948 Development of ultrasonic quartz memories.

1950 H. Aiken's first use of magnetic tape storage in a digital computer (Mark III).

1951 I.M. Forrester publisheS 00 ferrite core memory and the principle of coincidence addressing.

1953 First use of ferrite core memory in data processing units. First use of Ferrite-Kemel-Storage in data
processing units.

1955 The mM laboratories in San lose, California (Goddard, et al.), develop the magnetic disc storage, a new type
of storage with high capacity and fast access, which is first used in the RAMAC-machine.

1955 H.O. Leilich develops a drum storage for PERM: 600,000 bits, 250 revolutions/s, 200 magnetic readfwrite
beads.

1956 D.A. Buck describes the first low-tempetaIure switch, called Kryotron. Various application investigations for
memory applications in computers ever since.

1956 Development of magnetostrictive ultrasonic delay line for data memory units.

1957 Basic investigations by Tensor, Gianola and Long 00 magnetic wire storage with thin films.

1958 Delivery of the first transistorized computers with flip-llop memories.

www.manaraa.com

THE EVOLUTION OF DATA MEMORY AND STORAGE 5

1959 1be Bell-laboratories develop a photographic storage wilh 210bits and 5iJ.s access lime, wilh calbode ray
tobe, opticallense arrangement pbotograpbic plales aod pbotocell.

1959 IBM develops a photographic storage on rotating glass discs as storage for a JaDsuage translaIim system.

1965 Development of the "chain-store", a fast Ihin film memory element by IBM (USA).

1966 Start of systematic resean;h on semiconductor mmo1iIhic integrated cin:uits with high integratim density.

1966 Univac, Bull and Nippon Electric use magnetic ullIaSOOic delay lines for the tint lime.

1967 IBM develops a 120 ns-<:ycle time memory unit with Ihin JIIlI8IIl'Iic films and 600,000 hits capacity.

1969 First use of semiconductor memories in a data processing unit: IBM a0n01lDCes model 360/85 with
monolithic buffer storage of a capacity of up to 32,000 bit

1970 ILUAC lV-Prototype: tint computer unit constnJctcd with monolithic main stomge.

1971 RCA announces a prototype of a semiconductor read/WriIe memol}' with a capacity of 1 mi1Iim bits.

1980 First production of semiconductor memories with a capacity of 64 kbit/chip.

1983 Semiconductor memories with a capacity of 256 kbil/cbip.

1986 Semiconductor memories with a capacity of 1 Mbil/Chip.

1987 The tint prototype of an optical "Write Once Read Mostly" (WORM) lwd disc aue announced.

1990 Semiconductor memories reach a capacity of 4 Mbil/chip.

1991 Hitacbi anD01lDCeS its tint prototype of a 64 MBif/chip.

Fig. 2. Milestones in research and development of data memory and storage

For typical realizations of the various memory technologies shown in Fig. 1,
capacities and the inverse of the access-time are plotted in Fig. 3. The product
of both values yields a figure of merit: the larger the capacity and the shorter the
access time, the higher is the quality of the memory. Significant improvements
of these values expressed in bits/sec can clearly be recognized from one memory
generation to the next one.

For comparison, estimated values of the human brain are also entered in this
figure. Research of the structure and operation of the human brain has progressed
remarkably in the last decades. We know for example almost certainly that our
brain consists of about 30 billion nerve cells, and that it is structured in subunits,
similar to a data processing system, with short, medium and long access times.

www.manaraa.com

6

I [\ Storage Capacity
in bit

Terabit 10
12

10

10

111~
10 I').".

9
Gigabit 10

10

10

8

7

6
Megabit 10

10

10

5

4

3
Kilobit 10

2

'-A,

"~

",
"

"'",

I~
~,
'~

'~

I~ 10

10
1 '''''",

" VI "era itls

"2~ ~ I~ I'~
'>-. 1'h2 :"0 ~~ '-', "J.,

~ [h, b? ~ ", it

~ ~,
"

I,I~"
~, ~ b" k'16:,

.'t\ A, ~~ ~j~
~, ~ I'~ ~
>~ '~ "~ ~
~ >~ :hoJ:

" . '-
if/s)(

~, ~ ~ I~
~ ~ Jr~ ~

W.E. PROEBSTER

",
" '~ '~ .'~ I'~ ~,

I'~ i~ '~ I'~ ~, ~,
r", I>~ '~ ~ ~ """,
~" ~, ~, ",~ '~ I~
"~ '''''", I~ r'y). "~ "'",

4' ,
l~ I~ I'~ "~ '\., Vh
I~ I~ ~ '~ ~')J 1&'\(5

" ~ ,~ ''4 '5k K 1"
'~ I'~ l~ ''3:, 1"

",
""

6

r~ '~ ~ ~ ~ '\
'~ '~ ~ ~ .~ ~,

100 10
-1 -2 -3 -4 -5 -6 -7 -8 ~

10 10 10 10 10 10 10 10 10

1/ Access Time
in 1/seconds

1 Abakus
l' Mechanical
2 Eleclro-Mechanical
3 Electron Tub~. Register
3' SAGE- Register
4 Discrete Transistor
5 Bipolar- LSI
7 Delay Line
8 CRT-Storage
9 Tunnel Diode

10 Magnetic Film
11 Drum Memory "Manchester"
11 'Drum Memory "PERM"
12 Ferrite Core Storage

13 FET - Storage
14 CMOS IMbit
14' CMOS 64 MBit Storage (Hitachi)
15 Punched Tape
16 Magnetic Disc
17 Diskette
18 Optical Storage
19 Punched Card
20 Magnetic Tape
21 MSS
22 Human Brain

The product of bolh values is a measure of qualily

Fig. 3. ''Figure of merit" of data memory and storage technologies

Area density and volume density are plotted in Fig. 4a) and 4b), for the time
span from 1600 to 1991 . Also, these figures illustrate convincingly the rapid

advances of memory and storage technology.

www.manaraa.com

THE EVOLUTION OF DATA MEMORY AND STORAGE

9

10

B

10

7

10

6

10

2
bIt/em

10"· ~_c·c,c:-~:' _________ ' ______________ , __ J. _____ --------- --f-------- ----------,---7"c.

4

10

3

10

2

10

1
10

9

10

6

10

7

10

6
10

" 10

4
10

3
10

2

10

1

10

-0
1101~''n'('''

a) Area density

oil/em "

b) Volume density

Fig. 4. Historical development of area density (a) and volume density (b)

7

www.manaraa.com

8 W.E. PROEBSTER

Two classes of memories with special functions will be treated only very
briefly; namely read-only memories, ROM, and associative memories.

In read-only memories, the information to be stored can be entered only
once, mainly at the manufacturing location of the memory component or of the
computer system, only in rare cases by the system user. The elimination of write
operations by the user allows the realization of memory units with lower cost
per bit, shorter access times and larger capacities. Furthermore, the information
is stored permanently and cannot be destroyed inadvertently by the user or by
the interruption of power. In addition, read-only realization of new memory
technologies accomplish in many cases sooner technical feasibility and therefore
reach sooner the market place.

Associative memories, which search for the content of memory cells and not
according to a specified address, constitute a combination of memory and logic.

In the following sections, the evolution of memory and storage technologies
and products will be sketched briefly, subdivided in:

1. Registers and caches,

2. Main memories,

3. Back-up

4. Archival storage.

Registers and Caches

As first realizations of memory units, we can consider the counting stones
of past cultures - e.g. of the Mayas - and the abacus of some 2000 years ago.
Capacities of the abacus seldom exceed some 100 bits, access times, given by the
speed to move our fingers, are in the range of one second.

The first calculators, invented by Schickard, Hahn, Pascal, Leibniz and others,
employed mechanical storage devices, wheels and drums with sticks. Capacities
and access times again ranged around 10 digits and one second respectively
(Fig. 5).

www.manaraa.com

THE EVOLUTION OF DATA MEMORY AND STORAGE

3

r

'.

p- .\

d?i .. \ 2 ,/'1
~\f, __ ·K~ . - .

\ ,

: A:
.. -.- (fR\. -.

- "'- ~

Fig. 5. Gears of Wilhelm Schickard

7

9

...
m

The electromechanical technology, from the end of the last century up to
about 1960, was the basis of electric calculators and electric computers, e.g. for
the punched card calculating computing system of Herman Hollerith, and even for
the first computers controlled by programs stored in read/write memories around
1940. In comparison to mechanical storage units, capacities and access times could
be increased by a factor of 10 and more.

The electrical relay, Strowger - and crossbar switches - allowed the realization
of several thousand bits with access times of about 10 milliseconds. The first
completed computers of Konrad Zuse were built with this technology.

Mter 1940, electromechanical elements were replaced by electronic compo
nents: for registers, vacuum tube flip-flops, with switching times around one mi
crosecond, for caches, cathode-ray tubes (CRT), utilizing charge storage: the fa
mous "Williams Tube" and acoustic delay lines using mercury tanks with piezo
electric generators and sensors (Fig. 6), later magneto-strictive wires with electro
magnetic transducers and sensors.

www.manaraa.com

\0 W.E. PROEBSTER

Fig. 6. Acoustic delay line of UNNAC I with a capacity of 18 x 480 Bit and an
access time of 222f.ls

From about 1965 semiconductor memories replaced all other technologies for
registers and caches.

For conventional applications, semiconductor registers and caches are inte
grated with the logical elements of processors in one chip, to reduce cost and
increase reliability.

Gallium arsenide memory chips may, in the future, gain increased importance
for extremely short access times in supercomputers, based on expected improve
ments of the gallium arsenide material's technology, which is more complex and
less understood than the silicon material technology.

www.manaraa.com

THE EVOLUTION OF DATA MEMORY AND STORAGE 11

Main Memories
Around 1950, drum memories were used as main memories in many pioneer

computers. Their capacities seldom exceeded one million bits, the access times
were limited by the rotational speed of the drum - material stability, centrifugal
forces - to the range of milliseconds.

As an example, the drum memory of the PERM is shown in Fig. 7 with a
capacity of 400,000 bits and a mean access time of two milliseconds, resulting from
the very high rotational speed of the drum with 15,000 revolutions per minute.

-,

Fig. 7. Drum memory of the PERM

Up from about 1955, drum memories were replaced by ferrite-core memories,
which offered faster access and larger capacities: switching times were typically
around one microsecond, capacities up to one megabyte and more. The second
mayor advantage of ferrite~core memories is their random access property: the
access time of the drum memory - and also of all other magneto-mechanical and
of many optical memories - is dependent on the actual distance of the requested
memory cell relative to the read/write station. In contrast, the access times
of ferrite-core memories - and for almost all other solid state memories - are
practically independent of the address of the requested cell.

www.manaraa.com

12 W.E. PROEBSTER

The addressing cost of ferrite-core matrices - first with vacuum tube circuits,
later with transistors - could be contained by multiple coincidence schemes based
on the static and dynamic rectangular hysteresis loop of the ferrite cores.

The cost of production of ferrite core matrices could be reduced dramatically
by ingenious automatic wiring techniques as compared to wiring by hand, which
was used in the beginning. The ferrite cores, which could be manufactured at
low cost, were put in order by vibration in the grooves of a metal plate. After
fixation of these cores by a grooved counter plate, all isolated x and y wires were
inserted in one manufacturing pass through the holes of the ferrite cores, which
finally had only an outer diameter of 0.3mm (12 mils) and an inner diameter of
0.175mm (7 mils) (Fig. 8).

Fig. 8. Ferrite cores positioned in core loader matrix cavities

A further reduction of the access and cycle times by a factor of 100 or more
was possible by thin magnetic films. The rotation of magnetization in thin magnetic
films allowed to obtain switching times of about 1 nanosecond. Thin magnetic film
memories with an access time of 60 nanoseconds, a cycle time of 120 nanoseconds
and a capacity of 600,000 bits have been developed and manufactured for many
years by mM, employed in the supercomputers System 360/95. Two disadvantages
are, however, inherent with all magnetic memories as compared to semiconductor
memories, which caused in the end also their defeat in the fields of buffer and main

www.manaraa.com

1HE EVOLUTION OF DATA MEMORY AND STORAGE 13

memories: firstly, the transfonnation of the representation of infonnation from its
electrical to the magnetic fonn and vice versa is very inefficient: practically only
a conversion efficiency of 10-3 to 10-5 can be reached. Secondly, if the size of a
memory cell is reduced, the relation of the energy of the read signal to that of the
disturb signal is not constant but it is decreased significantly.

The competition between magnetics and semiconductors in the fields of buffer
and main memories in the beginning of the 60ies was carried out by both parties
with tremendous effort. The outcome of this competition is well-known: in a
very short time span, semiconductor memory elements were generated, initially
with only a few bits per chip, soon up to one megabit per chip, and recently
even 64 megabits per chip, with chip dimensions of originally only of one by one
millimeter, up to 20 by 20 millimeters today.

Semiconductor memories can be produced at low cost and high perfonnance by
a combination of high-resolution photolithography, oxidation, etching and diffusion
technologies with silicon, the best-known element of the world today.

To increase the capacity, the semiconductor memory cells can be reduced in
size by three methods:

1. Improved lithographical resolution by transition from long light wave length
to short light wave length, possibly to electron beam and even to x-ray
lithography,

2. Simplification of the memory cell from initially 6 transistors per cell, later on to
4, and finally to 1 transistor per cell, combined with capacitive charge storage,

3. Refined packaging technology of the memory cell. Examples are here the
arrangement of the storage capacitance of dynamic random access memories
(DRAMs) in vertical grooves and furthennore the use of multilayer semi
conductor memory structures.

The experts on magnetism defeated by the experts on semiconductors in the
field of main memories withdrew to the exploration of new memory materials
and concepts: Improvement of materials for disc and tape storage and also the
exploration and development of non-volatile memories, memories with a special
function which at that time the still young discipline of semiconductor memories
could not fulfil.

Without special precaution the stored infonnation is lost in semiconductor
memories when the power supply is switched off. In many cases this is particularly
disturbing, for example when it is necessary to secure the state of a system. To
overcome this problem, but also to develop a product in-between memory and
storage, namely to bridge the gap in access times between the magneto-mechanic
storage devices and the faster random access solid state memories, for almost one

www.manaraa.com

14 W.E. PROEBSTER

decade physicists and engineers have worked in Europe, the USA and also in Far
East countries in research and development on magnetic bubble memories.

New magnetic materials on the basis of metals of rare earth have been
found suitable to store information by magnetic domains. In these materials and
arrangements the vector of magnetization is perpendicular to the plane of the storage
medium in contrast to conventional arrangements, for which the vector of the
magnetization is in the plane of the magnetic layer. These materials have a very
high coercitive force which is required here to withstand the strong demagnetization
field. In Fig. 9 the creation of magnetic cylindrical domains is shown which are
briefly called "bubbles" and which form the elements of binary storage. These
elements with a diameter in the· order of microns, can be generated, moved in
the film plane, duplicated, merged and erased by controlling external magnetic
fields. As an example of a memory configuration the classical minor/major loop
arrangement of the Bell-laboratories is shown in Fig. 10. Bubble memories with
capacities of 256,000 bits per chip with access time in the millisecond range can be
produced. Though the technical feasibility was proven and in many places not only
samples of bubble memories and computers were produced, bubble memories have
not been employed in conventional computers as in the meantime also non-volatile
semiconductors have been developed based on the insolated PET-controlling gate,
briefly called floating gate and this at a smaller cost per bit and with shorter
access times. An exception is the application of magnetic bubble memories for
military devices due to their stronger resistance against alpha rays in comparison
to semiconductor memories.

The development of the magnetic bubble technology influenced positively the
advances of the magnetic and optical disc storage.

www.manaraa.com

THE EVOLUTION OF DATA MEMORY AND STORAGE 15

b c

Fig. 9. Generation of magnetic bubbles

Mljor loop

Write E.rl5e

Fig. 10. Shift register storage with magnetic bubbles

www.manaraa.com

16

Backup storage: Magnetic and
optical disc and diskette storage

W.E. PROEBSTER

For backup storage already around 1955 the magnetic disc storage started to
replace the magnetic drum mainly because of its higher storage volume density -
essentially enabling three-dimensional storage versus two-dimensional storage on
the magnetic drum - leading to larger storage capacities.

The strive for high area and volume density is one of the predominant goals in
research and development of new storage technologies and products. For magnetic
disc memories, where the read/write head must not touch the magnetic surface
in order to secure high reliability and lifetime, one basic design rule is that the
following three form factors:

pole gap,

distance between read/write pole and recording surface and

the thickness of the magnetic recording layer

should be about equal and as small as possible.

The reduction of the distance between magnetic head and recording layer
through the last decades is shown in Fig. 12. This was only possible by improved
engineering designs and manufacturing methods for the magnetic heads, their
mountings and of the magnetic recording layer itself. The demand of high bit
density in combination with short access times leads necessarily to very high data
rates which in turn demand excellent high frequency properties of the read/write
heads and also of the recording layer.

These basic considerations illustrate the development history of magneto
motoric storage units - drum, disc, and tape storage: For the magnetic read/write
head the first embodiments, for example in the magnetic drum of the PERM,
consisted of nickel/iron alloys. Later on ferrite read/write heads offered improved
high frequency properties, better manufacturability and lower cost. Today ferrite
read/write heads are again replaced by arrangements with thin magnetic films -
deposited electrolytically, by sputtering or by evaporation - which allowed to
reach values of I micrometer and below for pole gap, distance between head and
recording layer and thickness of the recording layer itself. The more complex and
more costly production process of thin magnetic films is more than compensated
not only by the small dimensions of the storage cell, but also by the higher density
of the magnetic flux and the improved high frequency properties.

A similar development can be observed for the magnetic recording material.
In the first drum memories nickel wire was wound spirally around the drum surface
and served as carrier of information. It was soon replaced by iron oxide and ferrite,
well proven and improved in many products through many decades. Presently,

www.manaraa.com

THE EVOLUTION OF DATA MEMORY AND STORAGE 17

ferrite is again being replaced by thin hard-magnetic metal layers, which yield
higher bit densities.

The development of magnetic disc storage units started with constructions of
only one read/write head for many recording discs (Fig. 11). They were followed
by arrangements with one read/write head per recording surface placed on comb
shaped access mechanisms along with replaceable stacks of magnetic discs. This
feature, to mount and dismount disc stacks to and from a magnetic disc storage
unit which was highly desirable from a user's point had to be abandoned very soon
as with increased bit densities and the resulting tight tolerances head assembly and
disc pack have to be matched.

Pneumatic
actuating
cylinder

DIsk de lent

. !
· · ·

He.d,
I ~cC'dct:lIl)

Fig. 11. Carriage and actuator of the IBM 350 magnetic disc storage unit

www.manaraa.com

18 W.E. PROEBSTER

Technical Data IDM350 IDM 3380
Model E

1957 1985

Capacity in MBytes 5 5000
Number of drives 1 2
Number of discs 50 2x9
Access time in ms 600 17
Transfer speed in kBytes/s 8.8 3000

Head-to-surface-distance (1O-3mm) 31.5 0.3
Pole gap (l0-3mm) 39.4 0.6
Thickness of magnetic layer (l0-3mm) 47.0 0.6
Track density (SP/mm) 0.8 63.0

Bit density (Bits/mm) 3.9 600.0

Data density (Bits/mm2) 3.1 37800.0

Fig.12. Evolution of magnetic disc performance

Because of the steadily reduced flying heights of magnetic heads over the
recording surface special constructions were required: flying heights in the range
of one micron and less can only be reached by a balance of spring forces and
aero dynamical forces which act on the read/write head carrier, sometimes also
combined with separate start and landing tracks without information content for
the start and stop operation of the disc stack.

The diskette store is the small brother of the magnetic disc storage. It was
developed around 1970 with its low cost plastic base for the magnetic layers at
relaxed characteristic values for personal computer applications. Here, the magnetic
head is allowed to touch the storage layer, which is much thicker and which is not
so frequently accessed as for the magnetic disc storage. Capacities are today usually
in the range of about one MByte per diskette. In research laboratories with new
coding methods and with magneto-resistive read heads storage capacities up to 200
MBytes can be reached with access times of only a few milliseconds.

The development of optical data storage was initially pushed by the enter
tainment electronic industry. The compact disc technology, mainly developed by
Philips and Sony served also as basis for the optical storage of digital information.
Pits of different length in the range of micrometers carry the information. Using
semiconductor lasers the information can be read without mechanical contact of
the read head. The capacity of optical discs with diameters of up to 30 centimeters
is in the range of two GBytes with access times of only few milliseconds.

www.manaraa.com

THE EVOLUTION OF DATA MEMORY AND STORAGE 19

The main disadvantage of the first optical discs, namely the lack of the
write function will be overcome with new technical approaches. Of the different
proposals particularly the magnetic version deserves our attention. Here, the storage
cell has a preferred magnetic axis perpendicular to the recording plane similar as in
the magnetic bubble cell. Infonnation is written by heating the cell by a controlled
laser beam above the magnetic Curie point and cooling it in a magnetic field
perpendicular to the recording surface. The magnetic Faraday or Kerr effect is
used for reading.

This latest development shows clearly the technological direction for backup
storage: the technologies of the optical storage disc and that of the magnetic
storage disc begin to merge whereby the advantages of both technologies are being
utilized: adequate distances of read/write head to the recording layer, on one hand,
reliable read/write function on the other hand and also the possibility to exchange
the infonnation carrier. This demonstrates a rare example of harmonic cooperation
between two different technical disciplines.

Archival storage
Punched card files can be considered the first archival storage technology.

Huge databases emerged from the onset of our century. In 1965, when electronic
dataprocessing was already fully developed, the yearly production of punched cards
reached its peak. The punched card has, with SO columns of 12 positions each, a
capacity of around 1,000 bits. At a processing speed of about one thousand cards
per minute, the mean access time was in a range between milliseconds and seconds.

At the very beginning of electronic data processing, the application of magnetic
tape units - initially conceived for the recording of audio signals - started for low
cost storage of large data volumes. Due to the translatory motion of the tape from
the storage reel to the machine reel, the access time for the storage cell is not
constant but depends on its position relative to the read/write head at the start of
a read cycle.

Of the many proposed configurations of magnetic tape units, three closely
related fonns have prevailed until today, which have been remarkably improved in
the last years with respect to capacity and access time.

The first type is the classical magnetic tape unit with storage reels - the so
called long-tape-unit - with eight to nine parallel infonnation tracks (Fig. 13). By
major and minor tape loops and tape drives with very small inertia, the start/stop
acceleration could be increased up to 500 times the gravitational acceleration. For
a typical tape length of SOO meters and a bit density of 250 bit per millimeter, the
total capacity of the magnetic tape is about 100 megabytes, access time is, at a
tape velocity of up to 5 meters per second, in the range of seconds.

www.manaraa.com

20 W.E. PROEBSTER

Machmeretl File reel

Fig. 13. Tape path for the ffiM 2420 model 7 magnetic tape storage

A substantial disadvantage of these constructions is the necessity that the tape
reels and later the tape cassettes have to be loaded manually. In an attempt to
overcome this drawback, a mass-storage system with magnetic tape cassettes has
been developed around 1970 by mM with automatic loading of 5,000 cassettes by
robots to two read/write stations. Each cassette has a capacity of 50 megabytes,
stored on an about 8-cm-wide magnetic tape which could be written and read by
rotating magnetic heads tilted 45 degrees relative to the tape drive. Access and
storage of each of the 5,000 cassettes between the two read/write stations and
the honeycomb storage wings was accomplished within a few seconds. Quite a
number of these mass storage systems have been manufactured and installed. Due
to problems of software support and compatibility with other storage systems, this
product line has been abandoned already for several years.

Today advanced magnetic tape and cassette storage units with loading and
unloading by robots reach capacities of up to thousands of Terabytes and access
times in the range of minutes

The advances of magnetic disc storage resulting in increased capacities and
reduced access times, caused that the start/stop-operation of the magnetic tape units
just described was no longer necessary. As the second type of magnetic tape units,
for archiving of databases, today the so-called streaming mode is therefore used

www.manaraa.com

TIlE EVOLUTION OF DATA MEMORY AND STORAGE 21

almost exclusively, in which data is transferred to and from magnetic disc units
with continuous tape motion.

Tape units with 18 magnetic tracks and corresponding magnetic heads have
been developed especially for this mode of operation. Recently even improvements
to 36 magnetic tracks and magnetic heads have been announced.

An even further increase in storage density is offered by the third kind of
magnetic tape units originally developed by the entertainment electronic industry,
the digital audio tape (DAT), video tape recorder with tilted recording and rotating
magnetic head. The storage density can be increased by a factor of 10 as compared
to the tape unit with tape reels or tape cassettes of the first kind, mainly because of
overlapping tracks at the write operation. In this mode, no unused magnetic areas
on the tape are left between the individual tracks. Cross-talk between the tracks
is reduced by pairs of read and write heads which are tilted - analogous to the
operation of a stereo-gramophone-disc - by 40 degrees against each other. Today
DAT data cassettes are available with a capacity 5 gigabytes and more and access
times in the range of minutes.

In all likelihood, the magnetic tape technology will persist and not be replaced
by their competitors - essentially the magnetic disc and the optical disc - mainly
because of its extremely low cost per bit resulting from the low cost, replaceable
data carriers.

4. Conclusion

Throughout all these decades of memory developments covered in this paper,
many deep-rooted discussions about the future of data processing and especially
about the future of data memory and storage took place. And often the convic
tion was expressed that in foreseeable future a retardation of the progress and a
consolidation process would occur. Each time, such predictions were wrong: as
shown here, even today we do not notice any retardation of the development dy
namics. The physical limits of important present memory and storage technologies
are known, but many years of intensive research and development activities are
necessary to approach these limits. In addition, new ideas will emerge to improve
the characteristics of memory and storage - capacity, access time, cost - and to
explore new ways and methods, and - last but not least - to obtain functional
improvements by the integration of memory and logic operations.

www.manaraa.com

22

BIL77

BOB 75

BOW 77

CHA 78

COU70

DIE 60

ECC 19

ENS 48

ESC 80

FLA63

FOL 30/4

FOR 51

GAN75

Grr 89

HAR85

HARK 81

HARR 81

lllL75

KAU73

LEN 78

W.E. PROEBSTER

5. References

H. Billing, "Zur Entwicldungsgeschichte der digitalen Speicher". Elektron.
Rechenanlagen 19, p. 213-217, May 1977

A Bobeck et al., "Magnetic Bubbles: An emerging new MemOI}'
Techno1ogy",Proc. IEEE, vol 63, p. 1176,1975

D. Bowers, "Floppy Disk Drives and Systems", Mini-Micro Syst. 10, p. 36,
1977

H. Chang, "Magnetic-Bubble MemOI}' Technology", Marcel Dekker, 1978

E.D. Councill, et al., "A 275-Nanosecond Coincident Current Ferrite
Memory", Digest of the 1ntermag Conference Washington DC, April 1970

W. Dietrich, W.E. Proebster, "Nanosecond Switching in Thin Magnetic
Films", IBM Journal of Research and Development 4, p. 189, 1960

W.H. Eccles, "A Trigger Relay Utilizing Three-Electrode Thermionic Vacuum
Tubes", The Radio Review I, p. 143-146, 1919

A.G. Enslie, et aI., "Ultrasonic Delay Lines", J. Franklin Institute 245, p.
101-115, 1948

AH. Eschenfelder, "Magnetic BubbIe Technology", Springer, 1980

J.-P. Flad, "Les trois premieres machines a calcu1er", Schi.ckard (1623),
Pascal (1642), Leibniz (1673), Universite de Paris, June 1963

O. Folberth, H. BIeher, "Grenzen der digitalen Halbleitertechnik", nu, Bd.
30, Heft 4

J.W. Forrester, "Digital Information Storage in Three Dimensions Using
Magnetic Cores", J.App.Phys. 22, p. 44, 1951

K. Ganzhom, W. Walter, "Geschichte der Datenverarbeitung", Springer, 1975

W. Gitt, "Information - Die dritte GrundgroBe neben Materie und Energie",
Siemens-Zeitschrijt, 63.Jahrgang, Heft 4, Juli/August 1989

M. Hartmann et al., "Erasable magneto-optical recording", Philips Tech. Rev.,
Vol. 42, No.2, p. 37, August 1985

J.M. Harker et aI., "A Quarter Century of Disk File Innovation", IBM Journal
of Research and Development, p. 677, September 1981

J.P. Harris et aI., "Innovations in the design of magnetic tape subsystems",
IBM Journal of Research and Development, Vol. 25, No.5, p. 691,
September 1981

W. Hilberg (Ed.), "Elektronische digitale Speicher", Oldenbourg, 1975

H. Kaufmann (Ed.), "Daten-Speicher", Oldenbourg, 1973

E. Lennemann, "Tape libraries with automatic reel transport, digital memory
and storage", Vieweg, p. 65, 1978

www.manaraa.com

THE EVOLUTION OF DATA MEMORY AND STORAGE

KEY 75

KRY86

LEI 66

LEI 89

PID81

PRO 78

PRO 87

PUG 67

RAJ 52

RUS 67

SCH89

SIM65

S0L78

STE81

W1L49

W1L85

WIN 85

R.W. Keyes, "Physical limits in Digital Electronics", Proc. IEEE, Vol 63,
May 1975

M.H. Kryder, "The Special Section on Magnetic Information Storage
Technology", Proc. IEEE, Vol. 74, No. 11, p. 1475, November 1986

H.O. Leilich, "The Chain - A New Magnetic FIlm Memory Device", J. Appl.
Plrys. Vol 37, 1361 - 1362, March 1966

H.O. Leilich (Ed.), ''Thtorial Sessions, VLSIand Computer Periphals", 3rd
Annual European Computer Conference, May, 1989

W.B. Phillips et al., "lnnovations in the Design of Magnetic Tape
Subsystems", IBM Journal of Research and Development, p. 691--699,
September 1981

W.E. Proebster (Ed.), "Digital Memory and Storage", Vieweg, 1978

W.E. Proebster, "Peripherie von Informationssystemen", Springer, 1987

E.W. Pugh, et al., "Device and Array Design for a 120-Nanosecond Magnetic
Film Main Memory", IBM Journal of Research and Development II, p.
169-178, 1967

J.A. Rajchman: "Static Magnetic Matrix Memory and Switching Circuits",
RCA Rev. 13, p. 183-201,1952

L.A. Russell, RM. Whalen, H.O. Leilich, "Ferrite Memory Systems", IBM
Technical Report, 1R 00.1640, August 14, 1967

W. Schilz, C. Butterworth, "VLSI, External Memories and Storage", Digest
of 3rd European Computer Conference, Proceedings VLSI and Computer
Peripha1s. W.E. Proebster, Hans Reiner (Ed.), May, 1989

Q.W. Simkins, "A High-speed Thin Film Memory: Its Design and
Development", Proceedings of the Fall Joint Computer Conference, 1965

S. Soll, I.-H. Kirchner, "Digitate Speicher", Vogel, 1978

L.D. Stevens, "The evolution of magnetic storage", IBM Journal of Research
and Development, Vol. 25, No.5, p. 663, 1981

F.C. Williams, et al., "A Storage System for the Vse with Binary Digital
Computers", Proc. IEEE 9612, #81, p.183-200, 1949

M.R. Williams, "Some Anecdotes from the History of Computing - Early
Memory Devices -", in Uberblicke Informationsverarbeitung, Hermann
Maurer (ed.), BJ. Wissenschaftsverlag, p.22-233, 1985

E.O. Wmkelmann, "Bin Vierteljahrhundert Magnetplattenspeicher in der mM
Deutschland", Datentechnik im Wandel, (W.E. Proebster Ed.), Springer, 1985

23

www.manaraa.com

OPTIMIZING LOGIC FOR SPEED, SIZE, AND TESTABILITY

ROBERT K. BRAYTON and ALEXANDER SALDANHA
University ofCaliforniLl- Berkeley CA

Abstract. Three primary objectives, optimized at all levels of design of integrated circuits are speed,
size, and testability. While techniques for individually optimizing each of these are well formulated,
until recently not much was known about the interactions between these criteria. There are two
important reasons why this interaction is interesting. First, it was unknown whether a tradeoff
between the criteria necessarily exists, i.e. must the optimality of one objective be sacrificed when
the others are optimized? Second, the impact of the tradeoff between the speed, size, or testability
on the resulting quality of the optimized integrated circuit was not well understood. This paper
surveys the various interactions that are known to exist between these three criteria in combinational
logic circuits; most of the results apply to sequential circuits as well. After a review of techniques
for optimizing speed, size, and testability individually, the interactions between these criteria are
explored with emphasis on recent results relating performance and testability in optimized circuits. A
long range goal is to understand the optim um tradeoff (or Pareto) surface in the speed-size-testability
space. We wish to devise transformations on logic which are guaranteed to move from one point to
another on this surface. This and other open questions are discussed in the final part of the paper.

1. Introduction

Three major axes used to measure the goodness of a logic design are its speed,
size, and testability. In this paper, we discuss optimizations done mostly at the
technology independent level and use technology independent measures for all
criteria. Speed is measured as the longest sensitizable path of the circuit (thus
excluding false paths). Size is measured by the number of literals in the logic
equations. Testability is measured by the percentage of either the stuck-faults or
path delay-faults that can be tested.

Logic synthesis has traditionally addressed each of these parameters separately
and more recently, in pairs. Results precisely relating all three are still missing. A
long range goal is to understand the optimum tradeoff (or Pareto) surface in the
speed-area-testability space. We wish to devise transformations on logic which are
guaranteed to move from one point to another on this surface.

In the logic synthesis area, the most mature results optimize for area. Minimal
area can be obtained by either redundancy removal or logic minimization using
don't cares [8]. Synthesis for 100% testability for stuck-faults can be accomplished
ei ther by redundancy removal, or by starting wi th a two-level circuit and restricting
the type of transformations used. Synthesis for speed can be done by transforma
tions such as tree-height reduction, partial collapsing, generalized bypass and select
transformations. and technology mapping [41; 45; 29; 6; 44].

In considering pairs of these criteria, the relation between speed and area is
somewhat understood since most speed-up algorithms selectively duplicate logic,
thus adding area to obtain an incremental speed up. Stuck-fault testability can
be directly related to area since an untestable connection can be removed. thus
simultaneously reducing area and improving testability. The relation between speed
and testability is addressed by the KMS transform which replaces a redundant circuit

25

P. Dewilde and J. Vandewalle (eds.), Computer Systems and Software Engineering, 25-63.
© 1992 Kluwer Academic Publishers.

www.manaraa.com

26 R. K. BRAYTON AND A. SALDANHA

(for stuck-faults) with an irredundant one with no loss of speed [23]. Recently, the
efficiency of the KMS transfonnation has been improved significantly (requiring
only a few seconds on even the largest circuits) by making it a single pass operation
on the circuit, during which all false paths greater than the longest true path are
removed [33]. This leads to the question of whether it is evernecessary to synthesize
circuits with long false paths.

Another set of questions concerns delay testability. Since fast circuits are of
interest, it is important that these can be delay tested. Various delay testability
conditions have been proposed. Most imply regular stuck-fault testability, but are
much stronger. An open question is to find the weakest practical delay testability
criteria for which full delay testability can be synthesized. Can we do this without
sacrificing delay? How much area penalty must be paid?

At the moment, there are no results yet that relate all three criteria in a tight way.
Some open questions are concerned with how nonoptimal the area becomes when
the other two parameters are optimized, whether by speed-up transfonnations or
testability optimization (stuck-faults or path delay-faults).

This paper provides a survey of the state-of-the-art in logic optimization for the
three criteria discussed above. While all known interactions between the criteria
are covered, the focus is on recent results and the open issues that need to be
addressed with respect to relating all three parameters. The paper is organized as
follows. Section 2 is a review of traditional logic synthesis algorithms that focus
on optimizing one of the speed, size, or testability of a design. Section 3 considers
the interactions between pairs of criteria. The interaction between perfonnance
and testability motivates the KMS algorithm, which is studied in detail in Section 4.
Section 5 illustrates the tradeoff surface that exists between all three criteria.
Section 6 discusses some open questions concerning delay, area, and testability,
and Section 7 concludes.

2. Logic Optimization Criteria

Given a functional description of a system that includes memory constructs, com
binational logic synthesis extracts only the combinational portion of the logic for
optimization. The memory elements are connected back into the final optimized
circuit at the end of the process. [8] is a complete description ofthe algorithms and
approaches used in this level of synthesis. In this section, the three most common
goals of any logic optimization problem are considered.

2.1. AREA OPTIMIZATION

By far the best understood aspect of combinational logic synthesis is the manip
ulation of logic equations to yield an implementation of minimal area. When the
target technology is a two-level implementation both exact and heuristic algo
rithms are well established [13; 7]. In two-level implementations, the area of an

www.manaraa.com

OPTIMIZING LOGIC FOR SPEED, SIZE, AND TESTABILITY 27

implementation is proportional to the number of terms. A secondary function is
the number of occurrences of the variables (referred to as the number of literals).
In multilevel logic, exact minimization algorithms are much harder to achieve,
since the solution space is considerably larger due to increased degrees offreedom
compared to two-level logic [8]. However, several techniques exist that yield suf
ficiently high-quality area-minimal solutions. In a multilevel implementation, area
is most often estimated by the number ofliterals in the implementation. For multi
level implementations two basic approaches are adopted. TIle first is a rule-based
approach consisting of the application of selected transformations from a given
collection of rules developed by experienced circuit designers [14; 4]. The second
is algorithmic based [10; 2]. Many industrial synthesis systems employ the second
technique followed by the first.

A successful strategy employed in the latter approach is to decompose the
process into two steps: technology independent optimization and technology de
pendent optimization. This often simplifies the design and optimization problem to
be solved, while still yielding an efficient solution. Technology independent opera
tions, which apply to generic gates independent of technology-specific information,
may be further classified as algebraic or Boolean. While algebraic operations re
strict the set of operations used to optimize circuit structure, they are fast; they can
be performed in polynomial time in the number of variables of a function [46].
Although Boolean operations are more time-consuming, they are essential in ob
taining minimal circuits [36]. The technology dependent optimizations consist of
mapping the generic gates to a specific library of cells, corresponding to a target
technology [16].

2.2. PERFORMANCE OPTIMIZATION

Performance optimization is often the primary optimization criteria in logic de
signs [I; 8] (subject to some area constraints). A typical problem is to improve the
delay of an existing circuit structure. At the technology independent level this is
done by incremental modifications to the network topology to yield a/aster circuit.
Three transformations [41; 29; 45], that have recently matured into efficient and
feasible algorithms to reduce delay are considered in this section. At the technology
dependent level, delay may also be minimized instead of area during the mapping
phase [44]. An alternate technique, often used in conjunction with mapping. is the"
insertion of buffer cells with high capacitative-drive properties to further improve
delays through gates propagating signals to several different parts of the circuit [5].

Timing optimization is viewed as a three-phase process [8]. In the first phase,
global restructuring is performed on the circuit to reduce the maximum level or
the longest path in the circuit. Typically. this is accomplished in a technology
independent fashion. For example. changing from a ripple-carry-adder to a carry
look-ahead adder (or something in between) is accomplished in this phase. The
second phase is dependent on the target technology and is referred to as technology

www.manaraa.com

28 R. K. BRAYTON AND A. SALDANHA

mapping. Techniques for reducing the delay of mapped circuits, with minimal area
increases, have been studied recently in [44]. The final phase is to speed up the
circuit during the physical design process. Transistor sizing [20] or timing driven
placement of modules [31] are examples of such optimizations. In this phase, when
an actual design exists, a more accurate timing analyzer is used to fine-tune the
circuit parameters. In this paper, only the first phase of timing optimization is
considered, viz. technology independent logic resynthesis. The other technology
dependent optimizations of buffering [40] and transistor sizing [20] do not change
the testability of a design.

2.2.1. The delay of a circuit

Before describing perfonnance optimization techniques it is necessary to define
the metric used for estimating the perfonnance of a circuit. Early logic synthesis
systems used the number of levels of logic as a crude estimate of perfonnance. This
estimate is easily made more accurate by considering technology dependent delays.
However, in some designs the longest paths can never contribute to the delay of
the circuit. These paths are tenned false paths and should not be considered in
estimating the delay [28]. In this paper, perfonnance is measured by the length
of the longest sensitizable path. Infonnally stated, a path P is sensitizable if
there exists an input vector such that the signal value (that propagates) along P
detennines the value at the output of the circuit. See [27] for a complete treatment
of this subject. Here it is mentioned that recent advances [30; 19] have allowed the
efficient detennination of the longest sensitizable in large benchmark circuits.

2.2.2. Tree-height reduction

The first approach to technology-independent timing optimization is tree-height
reduction [24; 15; 41]. The algorithm of [41] uses a timing driven decomposition
of the network into 2-input gates. This is important since the manner in which
a complex gate is implemented changes its delay characteristics. Various models
are used for computing delays. One is a fast technology mapping [16] of the
two input gates into a standard cell library. This provides more accuracy to the
timing estimates. An algorithm, based on timing constraints, for decomposing a
complex function into two input gates is also used. This is done recursively from
the bottom up, so that at each stage the input arrival times are fairly accurate, and
thus subsequent decomposition of the upper nodes can be based on these updated
arrival times.

The resynthesis algorithm takes as input a network of 2-input NAND gates
and inverters. Timing constraints are specified as the arrival times at the primary
inputs and required times at the primary outputs. The algorithm manipulates the
network until the timing constraints are satisfied or no further decrease in the delay
is possible. The output of the algorithm is also in tenns of 2-input NAND gates and

www.manaraa.com

OPTIMIZING LOGIC FOR SPEED, SIZE, AND TESTABILITY 29

inverters.
An outline of the timing optimization algorithm is given in Figure 1. Details

of each step of the algorithm and its parameters are in [41]. Given the primary
input arrival times, the arrival times for each of the signals is computed. Using
the required times at the outputs, the required times for all signals are computed.
The slack at a node s, is defined as Rs - As where As is its arrival time and
Rs its required time. An e-network is defined as the sub-network containing all
signals with slack within e of the most negative slack. The procedure node...cutset(e
network) determines a cut-set [21] of nodes, each of which must be sped up in order
to realize some global delay reduction. The procedure partial-collapse(n, distance)
collapses all the nodes in the transitive fanin of the node n which are themselves
in the e-network and at most distance distance from n. All such internal nodes
that fanout elsewhere will be duplicated in this process (thus delay is improved
at the expense in area). The speedupJlOde(n) procedure performs timing driven
decomposition on the complex node n. The overall strategy attempts to place late
arriving signals closer to the output. Thus, in the first phase, divisors (or common
sub-expressions [9]) of the node with early arriving inputs are factored out. After all
such divisors are exhausted, a timing based decomposition into a 2-input NAND gate
tree structure is done. This routine again places late-arriving signals closer to the
output and also ensures that the final timing-optimized network is composed of2-
input gates only. A final step of area recovery may be performed to merge identical
gates.

Figure 2 illustrates the procedure on an example circuit. Primary input e is
a late-arriving signal which causes output n to be available after 6 units of time.
Since this signal is critical the timing optimization procedure attempts to reduce the
delay to n. In the first phase the €-critical network (encircled in the first schematic
of the figure) is identified. In the second step, these nodes are collapsed to yield
a complex node at n. Note that nodes h, j and m are duplicated since they are
required at other places in the network. Finally, the large node n is decomposed
based on arrival times of its inputs. Notice that e passes through fewer gates since
it arrives after the other signals. The final optimized delay for n is 4 units. The new
delay of the circuit is now 5 units, and the critical path is the path from e through
m. While a simple unit-delay model is used in this example, several different delay
models can be employed to improve the correspondence of the delay estimate on
the 2-input NAND gate network with its final mapped implementation [41].

2.2.3. Generalized bypass and select transforms

Two recent techniques that have generalized the approaches used in deriving the
carry-skip adder [25] and the carry-select adder [42] from a ripple-carry adder are
discussed in this section.

Generalized bypass transform: The carry-skip adder is derived from a conven
tional ripple-carry adder and provides a substantial improvement in performance

www.manaraa.com

30 R. K. BRAYTON AND A. SALDANHA

/* q is the Boolean network to be speeded up.
distance is the number of levels up to which the critical
fan ins are collapsed. */
speed..up (q, distance) {

}

do {
delay_trace (71) .
£-network = select_criticaLnetwork (71, distance).
nodeJist = node_cutset (£-network) .
Foreach node n E nodeJist {

partiaLcollapse (n, distance).
}
Foreach node n E node-1ist {

speedup.node (n) •

}
} while (delay(q) decreases &&

timing constraints not satisfied).

Fig. 1. Outline of the timing optimization process

at a very small expense in area. This is achieved with the addition of logic that
bypasses the long carry-chain through the original ripple-carry adder [25]. In other
words, speedup is achieved by converting a long (sensitizable) path in the ripple
carry adder to a false path in the carry-skip adder [32]. A technique that generalizes
this to speed up arbitrary circuits by making critical paths false is described in [29].

This approach is illustrated using Figure 3. The speed-up is accomplished by
making the long path from f m a false path. Note that the condition under which the
value of the node 9 is sensitized to the value of node f m is specified by the Boolean
difference tenn ~ = 9 f EEl Uf. On connecting the Boolean difference to the select
input of the MUX, the output is the same as f m when the Boolean difference is
true!, but is independent of f m (which is computed by the original circuit) when it
is false. Under all conditions the long path from f m through 9 is never sensitized,
i.e. it is a false path.

Generalized select transform: Another type of fast adder is a select adder (or
conditional-sum adder) [42]. A select adder is obtained from a ripple-carry adder

1 In some cases f m might have to be inverted to obtain the correct output.

www.manaraa.com

OPTIMIZING LOGIC FOR SPEED. SIZE, AND TESTABILITY

o

a

o 0

b c

o 20 0

d e f 9

a
o

b c
o 0

d
o

a b c d e f 9

Collapsing

e 9
2 0 0

Timing Driven

Decomposition

Fig. 2. Example: Timing optimization process

31

www.manaraa.com

32 R. K. BRAYTON AND A. SALDANHA

Fig. 3. Generalized bypass transfonn

by moving the critical carry signal very close to the primary outputs. This is done
via the Shannon cofactor operation [39]. A generalization of the Shannon cofactor
is effective in delay optimization of circuits with only a few long critical paths.
This technique is reported in [6] and is illustrated using Figure 4, where the bold
path is critical. The transformation moves the late arriving signal a nearer to the
output.

The question arises as to how the two transformations must be applied in a
network. Both the generalized bypass and generalized select transform can use
the same strategy as shown in Figure 1. The two steps of partial..£ollapse and
speed...node are replaced by the transformations described above.

2.2.4. Clustering and partial collapsing

A third approach to technology independent delay optimization is provided in [45].
The algorithm works in two steps. The first step performs a partial collapse of the
circuit to obtain nodes with large functions. This is done using a well known clus
tering algorithm but driven by delay estimates provided by a technology mapper.
The second step factors and simplifies the circuit without increasing the number

www.manaraa.com

OPTIMIZING LOGIC FOR SPEED, SIZE, AND TESTABILITY

b

b

a
b

c

c

c

d

d

d e 9

e 9

e 9

a

Fig. 4. Generalized select transform

33

o out

oflevels oflogic. This approach differs from the others in that no critical paths (or
sub-circuits) are identified; all paths are shortened. This is motivated by the fact that
in the technology independent phase, delay estimates are poor when compared to
the final technology-mapped circuit. However, after technology mapping. various
area recovery techniques can be used to undo some of the duplication of speeding
up short paths.

In Section 3.2 we show comparisons of three of the delay optimization tech
niques on a set of benchmark examples.

2.3. TESTABILITY OPTIMIZATION

Testability refers to the ability to determine whether an IC is behaving in accordance
with the given specifications. Most approaches to digital IC testing before the
middle of the last decade attempted to improve the testability of the design by
ad-hoc post-synthesis modifications. However, the increasing need for reliability
in manufactured circuits has led to the evolution of testability as an important
synthesis criterion.

In order to refer to the ability to test a chip, a fault model is required. Several
fault models are in use today. The most common is the stuck-fault model that

www.manaraa.com

34 R. K. BRAYTON AND A. SALDANHA

detects static (or DC) defects [11]. However, since the delay of a chip is often as
critical as its logical behavior, circuits should also be tested for dynamic (or AC)

defects [43]. This has led to the definition of two delay fault models. Even more
comprehensive detection of manufacturing defects may be achieved by checking
for faults that model open and shorted connections within transistors. One goal
when optimizing combinational circuits for testability is to ensure that 100% of
all faults being modeled can be tested by applying a suitable test vector sequence
at the primary inputs of the circuits. A defect is detected as a logical difference at
some primary output. Other important considerations are the number of test vectors
required to detect all the faults, the computation effort required in generating the
tests, and the time required to apply them.

There are well developed synthesis techniques for all the fault models listed
above. Most are best understood for two-level circuits [3; 22; 17]. Several multi
level optimization operations are known that may be used to retain testability in
circuits [22; 17; 35; 12]. Briefly stated, full single stuck-fault testability is achieved
via redundancy removal using automatic test generation procedures [37] or via
logic minimization using multilevel don't cares [36]. 100% multiple stuck-fault
(multi-fault) testability is obtained in two-level circuits by single-output mini
mization. Algebraic factorization retains multi-fault testability, as well as retaining
the test vector set. 100% delay-fault testable circuits can also often be derived
for two-level circuits by modifying the logic minimization algorithm; algebraic
factorization again preserves testability and test vector sets [17].

3. Relations Between Optimization Criteria

The goal of logic optimization is to obtain a design that is fully optimized with
respect to all three criteria; yet, all the optimization techniques mentioned in the
previous section target only one criteria. However, when optimizing for one of
the goals, sometimes the effects on the remaining criteria are known or may be
predicted. In this section we review some well-known results and detail a few
recent results.

3.1. AREA AND TESTABIUTY

Here testability means the percentage of faults for which there exists a test vector
which tests for the fault. The area of a circuit is directly related to this. The reason
for this is as follows. Consider a connection which can be set to a constant value
without affecting the functionality. In such a case, this connection may as well be
replaced by the constant value, thus resulting in a smaller circuit. If the connection
is retained in the circuit, then a manufacturing defect that appears on the connection
cannot be tested. Untestable circuits are undesirable for several reasons which are
explored in detail in the next chapter. Besides a non area-minimal implementation,
untestability impedes the test generation process and degrades the reliability of

www.manaraa.com

OPTIMIZING LOGIC FOR SPEED. SIZE. AND TESTABILITY 35

a chip. Several optimality criteria can be used to relate area to testability. A first
order optimality criterion for area is 100% single stuck-fault testability [3]. In
such a circuit, no single connection can be removed without changing the function
of the circuit. A second order form of optimality is 100% multiple stuck-fault
testability [22]. In such a circuit no set of connections can be simultaneously
removed from a circuit without changing its functionality.

3.2. AREA AND DELAY

Any of the approaches described in Section 2.2 can be used to improve the delay
of a circuit, albeit with some penalty in area [41]. An example of this phenomenon
is the different implementations of an adder circuit. A ripple-carry adder has the
least area among all adders, but is the slowest. A carry-skip adder [25] is faster
and is derived using an additional AND gate and MUX. A carry-select adder [47],
is similarly derived from a ripple-carry adder with some duplication of logic to
achieve a reduction in delay. A circuit with even better delay uses a carry-lookahead
structure, [47], but at substantially higher cost in area.

Synthesis techniques also show this phenomenon. An example of area-delay
tradeoff is shown in Figure 5, where a 32-bit ripple carry adder is optimized for
delay using path reduction techniques [41]. The experiment is performed using a
parameter to control the strength of the optimizations used in restructuring the logic.
It is instructive to note that during the course of the area-delay tradeoff, the delay
of each of the manual adder designs mentioned above is achieved by the automatic
synthesis procedure, but with a greater area penalty than the manual designs. This
implies that the tradeoff curve obtained by iterating the path-reduction technique
is not optimal.

Table I is a comparison of the area-delay tradeoff achieved using three different
approaches to timing optimization. Delay is measured by the number of levels of
two-input gates. Results using more accurate mapped delays during optimization
yield similar results, but a comparison between the three methods is much harder
then. The initial circuits are optimized for area using a standard script in SIS [38].
Each timing optimization program is then invoked; the resulting area and delay are
shown in the table. The examples are divided into three sets, separated by horizontal
lines in the table. The first set of examples are those for which tree-height reduction
(THR) yields the best delay result. The generalized bypass transform (Gnx) gives the
best delay for the second set, and partial collapsing (pc) using clustering performs
best on the third set. No single technique for timing optimization obtains the
best delay optimization on all examples. Note that while an area-delay tradeoff
exists within each technique, as illustrated in Figure 5 for tree-height reduction, an
area-delay .tradeoff seems to exist between the different techniques. For example,
in circuit CJ908, the initial circuit has a delay of 36.0 and area 894. Using the
generalized bypass a circuit with delay 31.0 and area 908 is obtained. Partial
collapsing yields a better delay of 28.0 but at an increased total area of 1112.

www.manaraa.com

36 R. K. BRAYTON AND A. SALDANHA

Name Initial Delay FinalDeliy Initial Area Final Area
THR GBX PC TI:lR

5xpl-hdl 16.0 10.0 15.0 15.0 139 210
5xpl 29.0 17.0 17.0 22.0 309 312
alupla 18.0 12.0 14.0 19.0 288 355

f51m-hdl 17.0 10.0 16.0 13.0 133 186
f51m 34.0 21.0 23.0 31.0 313 350

misexl 13.0 10.0 12.0 12.0 114 121
misex2 13.0 7.0 10.0 8.0 182 223

rd53 12.0 9.0 10.0 11.0 80 73
rd84-hdl 20.0 14.0 19.0 15.0 184 194

seq 26.0 19.0 20.0 20.0 1842 1890
sao2-hdl 45.0 23.0 35.0 32.0 462 299
C1908 36.0 24.0 31.0 28.0 894 1500
C2670 33.0 19.0 30.0 32.0 1688 1594
C3540 46.0 38.0 40.0 38.0 4178 3056
C880 38.0 20.0 34.0 32.0 836 1006

C5315 40.0 32.0 35.0 34.0 3280 3360
C6288 130.0 77.0 129.0 88.0 7374 7596
C7552 53.0 31.0 44.0 58.0 4394 4326
9sym 12.0 13.0 12Jr 13.0 548 515

9symml 18.0 15.0 13.0 16.0 532 491
bw 30.0 18.0 16.0 18.0 312 344

duke2 20.0 17.0 14.0 17.0 946 946
misex3c 44.0 34.0 26.0 44.0 1090 1044

rd84 15.0 15.0 14.0 18.0 268 261
sao2 30.0 23.0 21.0 23.0 420 378

9sym-hdl 31.0 19.0 27.0 19.0 260 275
conI 5.0 5.0 4.0 4.0 42 42

f2 11.0 8.0 8.0 7.0 54 54
rd73-hdl 17.0 12.0 16.0 11.0 132 153

rd73 21.0 12.0 20.0 12.0 196 192
misex3 35.0 25.0 32.0 24.0 1172 946
C432 40.0 36.0 37.0 34.0 591 501
C499 21.0 20.0 21.0 17.0 796 860

C1355 21.0 20.0 21.0 17.0 796 860

THR: Tree-height reduction, GBX: Generalized bypass transform
PC: Partial collapsing

GBX

140
345
301
134
347
120
183
80
187

1875
483
908
1692
4214
849
3494
7376
4446
548
549
414
1034
1165
277
437
263
43
63
133
199
1176
617
796
796

All circuit composed of 2-input gates, all initial and final circuits irredundant
Initial circuits optimized for area
Delay measured using number of levels of logic
Area measured by number of literals (= 2 x # of 2-input gates)

TABLE I
Performance optimization using three techniques

PC

126
265
342
119
289
99
208
69
128

1869
396
1112
2166
3396
966

4221
5369
4740
444
468
314
848
1097
235
269
152
34
45
106
164
822
498
844
844

www.manaraa.com

OPTIMIZING LOGIC FOR SPEED, SIZE, AND TESTABILITY

Delay

i Timing optmlzalion
!

I I
90.0&"-,,, ······-t·_ .. ·_· .. _ _·f-· .. _···_··· .. _··+ _ _·_+··-

I I I I

~ I I I
80.0& .. _ ·...... • ·_ .. ·_···_· ·_·t-···_· .. _ ··_ .. t .. ·_ .. ·_ .. · .. ·_·-i .. ·-

i l ! i
I t I I

70.0& .. _ .. ·_ -t·_ .. · ·_ .. ·· .. _·t"· .. _· .. _· _ .. t .. ·_ .. ·_··· .. ·_·-1· .. -
if! i

I I I I
60.0& .. _ _ j .. _ ... _ ... -····.. l_ _.+ ... _ _ ... +

I I I I
so.O& • .. • T · .. · .. · · .. ·r .. · · .. _·T · .. ·_ .. · .. ·_ .. ·1"·-

! I I I
40.0& .. _ •• • .. r·_ .. ·_· ······ .. ·r··· ·_.... t· .. _ .. ·_ .. ····_· .. !' .. -

I CIIny-lkIIi- I
30.0& • .. · • .. +· ·_ .. ·_···· .. _·f .. ···_ .. ·-.. ···_ .. +·· ... _ _._+ .. -

j j Clrry~ i
I I I I
: : : I

20.0& • · .. • .. t· · .. · .. _· · .. ·t .. · · · · .. i · · .. · "
f ; I !

600.00 700.00 800.00 900.00
Area

Fig. 5. Area versus delay tradeoff on a 32-bit adder

37

Tree-height reduction yields the best delay of 24.0, but at a substantially higher
area cost of 1500. However, a similar tradeoff does not always exist across all
the examples. This is because tree-height reduction and partial collapsing include
Boolean operation that sometimes lead to circuit with both smaller delay and area.
The generalized bypass transform uniformly increases the circuit area whenever a
delay improvement is possible.

Figures 6 and 7 illustrate the relative effectiveness of the three procedures under
two different cost functions that consider both area and delay. All delays and areas
have been normalized in deriving the cost function for each of the examples shown
in Table I. The graph in figure 6 shows the behavior when delay reduction is given
a weight of three times more than area increase. In this case, tree-height reduction
performs better than the other two approaches, since its cost function is smaller
in most cases. However, as seen in Figure 7, partial collapsing is consistently
better than tree-height reduction and generalized bypass when the area increase
is weighted three times more than the delay decrease. The generalized bypass

www.manaraa.com

38 R. K. BRAYTON AND A. SALDANHA

Colt Delay=O.75, Area=O.25

TIIIt -
GBX ••••

I.IO-+-I----------------PC _ ..

I.OS--t---fii--------i1---------i!c---,-

I.OO--t-'oot-~-----/-I_-------+i-fr__

O'75--f------\if1i---t-f--H:-Hf--Jri--+--H----'--

0.70--f--------f---1'-----i:;.,-F,.......,--li--

O'~-+------------~--~r--

O.~-+----------------+--

0.55-+-----------------'--
B •,.

Fig. 6. Cost (= 0.25 ... Area + 0.75 ... Delay) of timing optimization. Final area and delay
are normalized against initial area and delay, respectively. Examples sorted by decreasing
cost for tree-height reduction.

transfonn does not perform consistently better than the other two procedures for any
combination of weighted delay and area. This is probably due to the lack of an area
recovery step similar to those used by the other two procedures, i.e. simplification
(without increasing the number of levels of logic) and redundancy removal.

The time needed to perfonn the timing optimizations is not shown in the table,
but it may be a factor in evaluating the effectiveness of the different procedures. The
generalized bypass transfonn completes in a few seconds on each example. Partial
collapsing is a little slower due to the simplification and redundancy removal steps.
Tree-height reduction is significantly slower, since it repeatedly identifies critical
sections of the network, evaluates all the common sub-expressions of each node
being sped up, and invokes redundancy removal at the end to recover area. This
method requires several minutes on the larger examples shown in the table.

These results suggest that a combination of all the techniques should be used
possibly in an iterative process, selecting the best area-delay tradeoff incrementally.

www.manaraa.com

OPTIMIZING LOGIC FOR SPEED, SIZE, AND TESTABILITY 39

Coot Delay=O.25, Area=O.7S

THR-
GBX ._.

1.40 -1---t------------------PC ----

1.30

1.20
"'\-.

..•.
\.10

1.00

0.90

0.80

0.70

0.60

EXlmpl..

Fig. 7. Cost (= 0.75 '" Area + 0.25 * Delay) of timing optimization. Final area and delay
are normalized against initial area and delay, respectively. Examples sorted by decreasing
cost for partial-collapsing.

This experiment and the associated heuristics should be developed in the future.

3.2.1. Single stuck-fault testability effects

Table II shows a profile of the area and delay of a typical circuit as the tree-height
reduction algorithm of [41] progresses. illustrating its ability to trade off area for
speed. The first experiment with the example performs timing optimization on
an area optimized irredundant circuit. The delay and area on each pass of the
algorithm are given in the first two columns. The third column gives the number
of redundancies in the circuit. In this example, speedup always led to redundancy.
While the number of redundancies typically increases, note that it may also decrease
from one iteration to the next. The second experiment (last two columns) performs
redundancy removal during each pass of the timing optimization algorithm. While
this procedure is computationally expensive. it represents a better area tradeoff. In

www.manaraa.com

40 R. K. BRAYTON AND A. SALDANHA

addition, the fmal delay of the circuit in the second experiment is 23% less than for
the first (21.80 versus 26.80). However, redundancy removal applied to the final
circuit of the first experiment yields a delay of 21.80, but at an increase of almost
7% in area. In general, no definite conclusion can be made about the impact of
redundancy during timing optimization on the delay or area of the final circuit; it is
conceivable that a redundant circuit may allow some operations that lead to smaller
delays and areas. However, as shown in Section 3.3, redundancy is undesirable in
optimized circuits and every redundant circuit has an irredundant version at least
as fast.

Table III shows the final number of redundant faults for various circuits after
performing timing optimization on an initially irredundant area optimized circuit.
The initial circuits for timing optimization were obtained by using a standard area
optimization script in SIS [38], followed by redundancy removal to ensure full
testability. Only those circuits in the ISCAS and MCNC benchmark suite that have
redundant faults introduced by timing optimization are reported in the table. While
most of the circuits have only a few redundancies introduced during the delay
optimization process, a few circuits have a large number of redundant faults.

3.3. PERFORMANCE AND TESTABILITY

The creation of redundancy during performance optimization naturally leads to
the question of the relationship between performance and testability in optimized
circuits.

Consider a 2-bit block of a carry-skip adder, shown in Figure 8. In terms of
area and performance, the carry-skip adder is between that of a ripple-carry and a
carry-Iookahead adder. The carry-skip adder uses a conventional ripple-carry adder
(the output of gate II is the ripple-carry output) with an extra AND gate (gate 10),
and MUX added to each block. If all the propagate bits through a block are high
(the outputs of gates 1 and 3) then the carry-out of the block (e2), is equal to the
carry-in to the block (cO). Otherwise, it is equal to the output of the ripple-carry
adder. The multiplexer thus allows the carry to skip the ripple-carry chain when
all the propagate bits are high. A carry-skip adder of n bits can be constructed by
cascading a set of individual carry-skip adder blocks, such as Figure 8.

In most cases, the straightforward removal of redundancy does not affect the
speed of a circuit. However, in the carry-skip adder, in which an extra carry-chain
is added to improve the speed, removing the attendant redundancy in the design
(the select input of the MUX is redundant when stuck at 0) slows the circuit down.

The extra AND gate and MUX of the carry-skip adder have a profound effect
on its performance and testability. First consider the impact on the performance
and refer to Figure 8. Assume the primary input cO arrives at time t = 5 and all
the other primary inputs arrive at time t = O. Assign a gate delay of I for the
AND and OR gates and gate delays of 2 for the XOR and MUX. It can be shown that
the worst-case delay of the circuit is along the path from aO to e2 through gates

www.manaraa.com

OPTIMIZING LOGIC FOR SPEED, SIZE, AND TESTABILITY

without redundancy removal with redundancy removal
Delay Area # Red. Delay Area
38.80 1229.0 0 38.80 1229.0
37.40 1233.0 7 37.40 1233.0
35.80 1241.0 6 35.60 1227.0
34.60 1261.0 10 34.40 1237.0
33.20 1273.0 10 32.80 1249.0
32.60 1292.0 15 31.60 1269.0
31.40 1318.0 20 30.60 1285.0
31.20 1328.0 23 30.00 1297.0
30.60 1338.0 23 29.80 1313.0
30.20 1350.0 23 28.80 1309.0
29.40 1358.0 26 28.00 1321.0
29.00 1376.0 26 26.80 1327.0
28.80 1394.0 28 26.20 1343.0
28.20 1400.0 33 25.80 1367.0
27.80 1414.0 37 25.80 1369.0
27.40 1439.0 40 25.60 1379.0
27.60 1443.0 41 24.40 1367.0
27.40 1471.0 42 23.80 1373.0
t26.80 1483.0 45 23.60 1395.0

23.40 1425.0
22.60 1437.0
22.00 1467.0
21.80 1473.0

Example circuit is rot.blif
Each primary input arrival time set at 0.0 delay units
t On performing timing optimization after redundancy removal
on this circuit, area of circuit with delay 21.80 is 1577.0

TABLE II
Example: Impact of redundancy on timing optimization

41

www.manaraa.com

42 R. K. BRAYTON AND A. SALDANHA

Name Initial circuit Final Circuit
Delay Area Delay Area

C1355 33.20 820.0 30.80 868.0
C1908 46.80 849.0 41.80 1079.0
C5315 48.20 2904.0 45.40 3037.0
5xpl 22.60 188.0 20.00 203.0
alu4 27.40 687.0 26.60 691.0

apex2 19.20 416.0 18.00 493.0
apex4 212.20 4986.0 149.80 5457.0
apex7 17.00 431.0 16.00 471.0

b9 13.60 266.0 12.40 290.0
clip 17.00 201.0 14.60 209.0
des 102.40 6109.0 95.40 6146.0

duke2 18.60 637.0 18.00 659.0
f5lm 30.00 238.0 26.20 301.0

misexl 20.00 95.0 17.40 146.0
misex2 10.60 171.0 9.40 185.0

rd73 23.40 111.0 17.80 175.0
rd84 19.20 229.0 17.60 353.0
rot 38.00 1173.0 27.20 1381.0

sa02 21.40 233.0 16.80 276.0
z4ml 15.60 76.0 13.60 104.0

Each primary input arrival time set at 0.0 delay units
All circuits initially irredundant

TABLE III

Red.
4
4
14
3
2
18

173
4
6
2
9
6
13
14
1
4
28
40
16
5

Redundancy in timing optimization (tree-height reduction)

1, 6, 7, 9, 11 and the MUX in Figure 8. This is the critical path and its output is
available after 8 gate delays 2.

The (statically or topologically) longest path in the circuit is the path from cO to
c2 through gates 6, 7, 9, 11 and the MUX (available after 11 gate delays). However,
it is a false path in the carry-skip adder. In contrast, the topologically longest path
detennines the delay of the circuit in a ripple-carry adder. Thus the additional
circuitry reduces the delay of the circuit. As regards testability, while a ripple-carry

2 We are concerned with the critical path through the carry-out of the circuit, even though there is
a path whose output is available after 9 gate delays for the final sum bit in the block. This is because
in an adder composed of blocks similar to Figure 8, the critical path for the entire adder will be the
path through the carry-out of each block.

www.manaraa.com

OPTIMIZING LOGIC FOR SPEED, SIZE, AND TESTABILITY

cO

aO

bO

a1

b1

p1

~----------------------------- sO

)-------+----- s1

mux

c2

10

Fig. 8. 2-bit carry-skip adder

43

adder is fully testable, the carry-skip adder has a single redundancy. In Figure 8,
the single stuck-O fault on the output of gate 10 is not testable. This is due to the
fact that the carry-skip adder becomes a logically-equivalent ripple-carry adder in
the presence of the fault. Thus, in attempting to gain speed, the testability of the
circuit is compromised.

There is a further problem with the carry-skip adder. Consider the case where the
output of gate lOis stuck at 0, effectively reducing the circuit to a ripple-carry adder.
The critical path is now the longest path in the circuit and its output is available
after 11 gate delays. If the clock had been set based on the length of the original
critical path (in the absence of faults), then the circuit will behave incorrectly when
the single stuck fault exists. This is a serious problem since the stuck-O fault on the
output of gate 10 is not testable using standard static testing techniques. Thus an
untestable manufacturing defect can cause the circuit to malfunction.

The reason the stuck-O fault causes the circuit to slow down is that a non
sensitizable (false) path becomes sensitizable in the presence of the fault. In Figure 8
the longest path is a false path; however, in the presence of the stuck-O fault on
the output of gate 10, it becomes a true path. Thus, the output of the circuit is now
correctly available only after 11 gate delays rather than 8 gate delays.

www.manaraa.com

44 R. K. BRAYTON AND A. SALDANHA

4. The KMS Algorithm

As shown in the previous two sections, performance optimizations can, and do
in practice, introduce stuck-fault redundancies into designs. The negative aspect
of redundancy on reliability in a high-performance circuit was also illustrated.
This section is a description of the KMS algorithm which proves that for every
high-performance circuit with redundancies. there always exists an equivalent
irredundant circuit at least as fast as the original [23; 32]. First. three well-known
terms are defined.

DEFINITION 4.1. A non-controlling (or identity) value for a gate I is the value
at its input which in not a controlling value for the gate, and is denoted as 1(1).
For example, 1(1) = 1 for an AND gate.

DEFINITION 4.2. Let P = {fo, 11, ... , 1m} be a path. The inputs of Ii other than
li-I are called side-inputs of Ii along P and denoted as S(/;, P). A path that
starts at a primary input and ends at a side-input of P is a side-path of P.

DEFINITION 4.3. A path is statically sensitizable if there exists an input vector
which sets all the side-inputs of the path to non-controlling values. The condition
for static sensitization of a path P = {fo,!I, ... , 1m} composed of simple gates is

TIi:!:o TIgEs(f;,P) (g = l(1d)·

We use the notion of viability [28] in determining the conditions under which a
path may contribute to the delay of a circuit. Refer to [28; 27; 30; 32] for the formal
definition of viability. It is mentioned here that if a path is statically sensitizable
then it is viable, though the converse is not true. However, any path that is not
viable is a false path.

4.1. ALGORITHM FOR REDUNDANCY REMOVAL WITH NO DELAY INCREASE

Consider a circuit that has some redundancy. What can be said about the change
in delay of the circuit when a constant value (0 or 1) is asserted on a redundant
connection? While an answer cannot be provided for an arbitrary circuit, there
are circuit structures for which the effect of the change in delay by a redundancy
removal can be predicted. Three such cases are considered. In the discussion to
follow the first edge of a path refers to the connection between a primary input and
the first gate along the path. A longest path refers to a topologically longest path.

Longest path statically sensitizable: If a given circuit has a longest path that
is statically sensitizable (hence sensitizable), then redundancy can be removed
without any increase in delay. This is obvious since setting any connection to a
constant value (0 or 1) cannot increase the length of any path in the circuit. Thus, the
delay before and after all redundancy removal is the length of the longest path. The
next two cases explain how this property is realized on a functionally equivalent
implementation of an arbitrary circuit.

www.manaraa.com

OPTIMIZING LOGIC FOR SPEED, SIZE, AND TESTABILITY

a
b

45

p

Fig. 9. Fanout-free unsensitizable longest path. Connection from a to 1 is redundant.

Longest path not statically sensitizable - Fanout-free case: Assume that
all the longest paths of a circuit are not statically sensitizable (implied by non
viability). Additionally. assume that every gate along any such longest path P has
a fanout of exactly one. This implies that a stuck-O fault and a stuck-} fault on the
first edge of P are both redundant. Thus. if the first edge of P is set to a constant
value. the logical behavior of the circuit remains unchanged. More importantly.
the delay of the resulting circuit also does not increase. This case is illustrated in
Figure 9.

Longest path not statically sensitizable - General case: Now consider the
case where all the the longest paths are not statically sensitizable and some gates
along a longest path P have fanout greater than one. As before, the fault effects
of either of the two faults on the first edge do not propagate all the way along P.
However. these faults may still be detected through some other path, and thus may
be irredundant. Therefore. a constant value cannot be asserted on the first edge of
P without changing the functionality of the circuit. But a duplication of some gates
can be performed to ensure that all the gates along the longest path have a fanout
of exactly one. This is achieved simply by duplicating all gates along P up to the
last gate that has multiple fanout.

An example is shown in Figure 10. In the network shown at the top. path P (in
bold) is not sensitizable. Thus, both the stuck-O or stuck-} faults on the first edge
of p. which is the connection from a to gate 1. cannot be tested through gate 6 to
the output of P. However, each fault may be tested along paths through gates 7
or 8. thus causing the first edge of P to be irredundant. The network shown at the
bottom is obtained by duplicating gates I. 2. and 3. which includes all the gates
between the first edge and the last gate with multiple fanout along P. As shown, all
gates that have inputs from gates along P in the original circuit. are now connected
to the duplicate of the gate. In the example, gate 7 is fed from gate 12. which is the
duplicate of gate 1. Similarly, gate 8 has a fanin from gate 3 in the original circuit
replaced by a fanin from gate 32 after the transformation.

www.manaraa.com

46

a
b

a

b

R. K. BRAYTON AND A. SALDANHA

p

p'

Fig. 10. Duplication to avoid fanout on longest path

This duplication retains the functionality of the circuit. It is also proved that this
duplication does not change the viability of any of the paths in the circuit and hence
the delay of the circuit remains unchanged [23]. On this new circuit, the longest
path again cannot be responsible for detelTIlining the delay of the circuit. In fact,
both viability and static sensitization of paths remain unchanged by duplication.
Hence, the first edge of this new fanout-free path is not testable for either stuck
fault value. It can be set to either constant value without changing the logical
functionality of the circuit. It is also shown that this does not increase the delay of
the circuit (cf Theorems 7.1 and 7.2 in [23]). This procedure is then repeated on
the resulting circuit.

In summary, the procedure obtains an irredundant implementation of a given
redundant circuit by an iterative loop of duplications and redundancy removals
which are proven not to increase the delay of the circuit. The original KMS algorithm
is presented in pseudo-code in Figure 11.

www.manaraa.com

OPTIMIZING LOGIC FOR SPEED, SIZE, AND TESTABILITY

kms(7J) {
/* Circuit 7] has only simple gates. */
While (no longest path in 7] is

statically sensitizable / viable) {
Choose a longest path P.
Find n, the gate in P closest to the output

that has fanout > 1.
If n exists {

Let e be the fanout edge of n that is in P.
Let 7Jn be the set of gates in P and their fanin

47

connections which lie between the primary input
of P and e.

}

}

}

Duplicate 7]n to obtain 7]~.
Let gate n' in 7]~ correspond to n in 7].

Change edge e to be the single fanout of 11'.
Call the path in 7]' corresponding to P in TI, pl.

Else {
pi is the same as P.

}
Set first edge of pi to either constant a or 1.
Propagate constant as far as possible,

removing useless gates.

Remove remaining redundancies in any order.

Fig. 11. KMS algorithm for redundancy removal with no increase in delay

4.2. A SINGLE-PASS ALGORITHM

Due to the large number of false long paths in some circuits, it is imperative that any
efficient algorithm must not explicitly enumerate each false path while performing
the KMS transformation. This section develops such an algorithm and proves its
correctness.

DEFINITION 4.4. The set of all the paths beginning at connection c and terminat
ing at a primary output is called the path-set of the connection c, and is denoted
PS c .

Note that the paths in the path-set of a connection arc IO-paths ani y if the connection
is from a primary input.

www.manaraa.com

48 R. K. BRAYTON AND A. SALDANHA

Consider a connection c from a primary input in a circuit 'fJ. Additionally, assume
the computed delay of'fJ is < L and let every path in P S c be oflength ~ L. Note that
every path in P S c is an IO-path. On completion of the KMS algorithm of Figure 11,
all the paths in the resulting circuit, 'fJ', are of length < L. The KMS algorithm
removes connections between primary inputs and some gates, i.e. only the first
edge of any path is removed. Thus, c cannot exist in 'fJ', since every la-path
through c is oflength ~ L. This notion is captured formally by the next definition
and theorems.

DEFINITION 4.5. A L-path-disjoint circuit is one where the paths in PSc,for
any primary input connection c, are either all of length ~ L or all of length < L.

THEOREM 4.1. Let 'fJ be a circuit whose longest viable path is of length < L. Let
C = {c} be the set of all primary input connections such that each path in PS c is
of length ~ L (and hence non-viable). Then any multiple stuck-fault composed of
any combination of single stuck-O or stuck-l faults on each c E C is redundant.

Proof Assume that some multiple stuck-fault Fc on C is irredundant. Let a
vector v be a test for the fault. Consider the set of IO-paths PFc that propagate
the fault effect to a primary output under vector v. The length of each Q E PPc is
~ L by assumption. Pick a path Q = {fo, It, ... , fd E PFc with the property that
for each fi E Q, fi-l under v is the earliest arriving input of fi that propagates
the fault effect. Such a path Q exists since the fault effect is propagated under v
along some path in PFc' Consider each gate fi along Q in circuit 'fJ when vector
v is applied. All the side-inputs to fi that do not propagate the fault effect are at
non-controlling values. The remaining side-inputs each propagate the fault effect
but each of them is available only at or after the time inputfi_l arrives at J;. Hence
these side-inputs are smoothed out (i.e. set to the non-controlling value) when
considering the viability of the sub-path Q from fo up to fi. Hence the sub-path of
Q up to fi is viable. Since this is true at h, Q is viable, contradicting that no path
through c is viable. _

Theorem 4.1 proves that the logical behavior of a circuit that meets the condi
tions of the theorem remains unchanged by a multi-fault removal. The next theorem
proves that the delay, measured using viability analysis, remains unchanged under
this kind of redundancy removal.

THEOREM 4.2. Let 'fJ be a circuit such that all IO-paths in 'fJ of length ~ L are
non-viable. Let C = {c} be the set of all connections from a primary input such
that each path in PSc is of length ~ L (and hence non-viable). Let 'fJ' be the circuit
resulting after asserting a multiple stuck-fault composed of any combination of the
single stuck-O or stuck-l faults on each c E C. For any viable path 7r' in 'fJ', the
corresponding path 7r is viable in 'fJ.

Proof Similar to the proof of Theorem 7.2 of [23]. The difference is that each gate
may have several late-arriving side-inputs that are set to constant non-controlling

www.manaraa.com

OPTIMIZING LOGIC FOR SPEED, SIZE, AND TESTABILITY 49

values by the redundancy removal. However. these side-inputs always get smoothed
out (i.e. set to the non-controlling value) and do not change the viability conditions
of any path 7r' in r/ from the viability of the corresponding path 7r in TJ. •

With Theorems 4.1 and 4.2 it is apparent that a multi-fault redundancy removal
of the type specified can be done without increasing the computed delay (the length
of the longest viable path) or changing the logical behavior of the circuit. Moreover.
no duplication is performed. Of course. not all circuits have such connections. A
procedure is now described that transforms every circuit to a functionally equivalent
L-path-disjoint circuit. In this case. all paths of length ~ L will be removed by the
application of the above theorems. The only operation used is the duplication of
gates and the transfer of some of the fanouts of a gate to its duplicate.

DEFINITION 4.6. The set 0/ distinct path lengths/rom primary inputs to a gate f
is denoted by atimes(f). The distinct path lengths/rom each gate f to the primary
outputs is denoted by etimes(f).

If f is a primary input, atimes(f) is the single arrival time specified for f. If f is
a primary output. etimes(j) is 0 . However. the algorithm could be generalized to
take account of required times at the output; just take the maximum required time.
Rmax. and think of a buffer on each output f with delay Rmax - RI' where RI is
the required time for f.

The algorithm to derive an L-path-disjoint network for a given network TJ is
described in Figures 12 through 15. The main procedure. shown in Figure 12.
consists of three phases.

The first phase computes the distinct paths lengths from primary inputs to each
gate f. and the distinct path lengths from each gate f to the primary outputs. This
is done by simply performing a topological traversal from the inputs to the outputs
for computing atimes, and a reverse topological traversal for computing etimes
(Figure 13).

The second phase consists of gate duplication and the transfer of some fanouts
of a gate f to one or more duplicates of f. The procedure is shown in Figure 14.
The essential operation performed on a gate with multiple fanout is the transfer of
a set of fanout connections of the gate to a duplicate gate. The gates are traversed in
reverse topological order from primary outputs to primary inputs. Let f be a gate
that is to be processed by the algorithm. Let PI be any path from a primary input up
to f. A duplication is only performed if there are at least two paths. Q 1 I and Q21
from f to the primary outputs such that31PII + IQl/1 < Land IPII + IQ2/1 ~ L.
Following the duplication. one or more fanout connections arc transferred from f
to its duplicate f dup. according to the following rule. Let Q I represent any path
from f to the primary outputs after some fanout connections are transferred to
fdup. Then I PI I + I Q I I ~ L for any PI and Q f. Lemma 4.1 below ensures that this
condition can always be satisfied. It is important to note that etimes(f) is updated

3 IPI denotes the length of path P.

www.manaraa.com

50 R. K. BRAYTON AND A. SALDANHA

1* Derive an irredundant network no slower than ry.
ry has no sensitizable paths of length ~L. *1
single_pass_kms (ry, L) {

}

1* Circuit ry has only simple gates.
AJ and RJ is the arrival time and required time,

respectively, at gate f.
alimes(j) are the different path lengths from

primary inputs to J.
elimes(f) are the different path lengths from f to

primary outputs. *1

1 * Compute atimes(J) and etimes(J) for each node f. * 1
kms_setup_times (ry, atimes, elimes).

1* Duplicate gates *1
nodeJist = list of gates in ry in reverse topological order.
Foreach node J in node_list {

kms_duplicate_gate <f, ry, L, atimes, elimes).
}

1* Set constants on first edge of paths of length ~ L. *1
kms_set-constant (7/, L, atimes, elimes).
Propagate constants as far as possible.
Remove remaining redundancy in any order.

Fig. 12. Single-pass algorithm for redundancy removal with no increase in delay

whenever a fanout connection is moved to f dup. Similarly, etimes(fdup) is created
to reflect the paths through the fanout connections transferred from f. Duplication
is not done on any node with only one path to any output. Hence primary outputs
are not duplicated.

This transformation is repeated on fdup (the assignment 9 = g' in Figure 14)
until no further duplication and transfer of fanout connections is required. It is now
shown that the resulting network after all the gates are processed by the algorithm
is a L-path-disjoint network.

DEFINITION 4.7. The level 0/ a node is the maximum number o/nodes along any
path/rom the node to the primary outputs. The level 0/ a primary output node with

www.manaraa.com

OPTIMIZING LOGIC FOR SPEED, SIZE, AND TESTABILITY 51

kms_setup_times <77, atimes, etimes) {

}

Perform a delay trace on the network.
Foreach node f of 77 {

atimes(J) = {}.
etimes(f) = {}.

}
/* For each node f, compute atimes(f) * /
nodeJist = list of gates in 77 in topological order.
Foreach node f in nodeJist {

}

If f is a primary input {
atimes(f) = A f .

}
Else Foreach fanin g of f {

atimes(J) = {u + d(f, g)Ju E atimes(g)} .
}

/* For each node f, compute etimes(f) * I
node_list = list of gates in 77 in reverse topological order.
Foreach node f in nodeJist {

}

If f is a primary output {
etimes(f) = o.

}
Else Foreach fanout g of f {

etimes(J) = {u + d(f, g) Ju E etimes(g)} .
}

Fig. 13. Path length calculations in the single·pass algorithm

www.manaraa.com

52 R. K. BRAYTON AND A. SALDANHA

kms_duplicate_gate <f, 7], L, atimes, etimes) {
9 = J.

}

Foreach time t E atimes(f) in ascending order {

}

If (t + min (etimes(g)) < L && t + max (etimes(g)) ~ L) {

/* some fanout of gate must be split */

}

g' = duplicate_gate (g) •

atimes(g') = atimes(g).
etimes(g') = etimes(g) - {te Ite E etimes(g) , t + te ~ L}.
etimes(g) = etimes(g) - {te It. E etimes(g) , t + t. < L}.
Foreach fanout h of 9 {

If (t + min (etimes(h)) + d(g, h) < L) {

Replace connection from 9 to h by g' to h.
}

}
/* repeat on duplicate gate of 9 */
9 =g'.

Fig. 14. Gate duplication in the single-pass algorithm

no fanout is 0 .

LEMMA 4.1. Consider gate I, in network Tf, that is processed by the algorithm
of Figure 14. Assume that the lists atimes(f) and etimes(f) are computed using
the procedure of Figure 13. Let f' refer to gate I or any of its duplicates 4• Then
the following invariant is true for each f' :for each I~time E atimes(f'), I~time +
etimes(f') < L, or I~time + etimes(f') ~ L5.

Proof Note that the gates of network 17 arc processed in reverse topological order.
The proof is by induction on the level of a node I. Also note that the invariant
holds trivially if etirnes(f) has only one element.

4 There is no loss in generality in referring to the gates by a single representative I', since, for
each path from the primary inputs to I, there exists a corresponding path to some duplicate gate of I.

5 The notation x + S < L, for x a scalar and S a set, means that x + 8 j < L for all Sj E S.
x + S ~ L has an analogous meaning.

www.manaraa.com

OPTIMIZING LOGIC FOR SPEED, SIZE, AND TESTABILITY 53

kms_set_constant ('17, L, mimes, etimes) {

}

/* TJ is a L-path-disjoint network */
Foreach primary input f of '17 {

}

/* atimes(f) has exactly one entry */
t == atimes(f) .
Foreach fanout g of f {

}

If (t+d(f,g) + min(etimes(g) ~L) {
Replace g by constant 0 or 1.

}

Fig. 15. Setting constants on false paths in the single-pass algorithm

Induction Basis: If level == 0, then f is a primary output with no fanout.
Thus, etimes(J) == {O }. Let Pj be any path from a primary input to J. Since
IP,I + etimes(J) is either < L or ~ L, the invariant holds.
Induction Hypothesis: Assume the invariant is true for all gates oflevel < k.
Induction Step: Let f be a gate oflevel k.

min(etimes(J)) and max(etimes(J)) represent the minimum and maximum
times, respectively, in the list etimes(f).

Case 1: J has single fanout.
Let h be the single fanout of f. By definition, h has level < k. By the induction
hypothesis, either hatime + etimes(h) < L, or, hatime + etimes(h) ~ L, for
each hatime E atimes(h). But, atimes(h) 2 atimes(J) + d(J, h). Rewriting
the invariant for h, fatime + d(J, h) + etimes(h) < L, or, Jatime + d(J, h) +
etimes(h) ~ L. But, etimes(J) = etimes(h) + d(J, h), since f has single
fanout. On further rewriting of the invariant for h, fatime + etimes(f) < L,
or, fatime + etimes(f) ~ L. Therefore, the invariant holds for f also.
Case 2: f has multiple fanout and t+max(etimes(J)) < L, Vt E atimes(J).
In this case, each path through gate f is of length < L and the invariant holds.
Case 3: J has multiple fanout and t +min(etimes(J)) ~ L,Vt E atimes(f).
In this case, each path through gate f is of length ~ L and the invariant holds.
Case 4: J has multiple fanout and there exists some t E atimes(f), such
thatt + min(etimes(J)) < Land t + max(etimes(f)) ~ L. This is the case

www.manaraa.com

54 R. K. BRAYTON AND A. SALDANHA

where a duplication and transfer of some fanout connections is perfonned. Let
tmin represent the smallest time t E atimes(J) for which the condition for
case 4 holds. Let /dup be a duplicate of f. Each fanout h of f satisfies either
tmin +d(f, h)+min(etimes(h)) < L ortmin +d(J, h) +min(etimes(h)) ~
L. If the first condition holds the connection from f to h is replaced by the
connection from f dup to h. Nothing is done if the second condition is true.

Consider the gate f after all its original fanout connections are processed. For
each fanout connection h retained on f. tmin + d(J, h) + mine etimes(h)) ~
L. For any t f E atimes(f), where t f > tmin. obviously, t f + d(f, h) +
etimes(h) ~ L. Rewriting, t f + etimes(f) ~ L. For any t f E atimes(J),
where tf < tmin, then tf + max(etimes(J)) < L, due to the choice oftmin
assumed above. Thus, t f + etimes(f) < L. Thus, f satisfies the invariance
condition. The algorithm repeats on f dup which ensures that the invariant
eventually holds on each duplicate of f created. _

Since the invariant stated in Lemma 4.1 holds for each primary input, the [mal
network is an L-path-disjoint network. Thus on completion of the second phase.
the path-set of each first edge of any path of length ~ L contains only paths of
length ~ L. Hence, all such edges are set to constant 0 or 1 in the final phase of
the single-pass algorithm (Figure 15).

Figure 16 illustrates the working of the algorithm on an example network. Each
gate has unit delay and all primary inputs arrive at t = 0 . Assume that the initial
network (top of the figure) has a longest viable path oflength 3. Hence an L-path
disjoint network for L = 4 is required. Following the first phase of the algorithm,
the variables atimes and etimes are as follows:

atimes(gl) = {I} etimes(g1) = {2,3,4}
atimes(g2) = {1,2} etimes(g2) = {2,3}
atimes(g3) = {1,2,3} etimes(g3) = {1,2}
atimes(g4) = {1,2,3,4} etimes(g4) = {I}
atimes(g5) = {1,2,3,4,5} etimes(g5) = {O}

The L-path-disjoint network is obtained by a reverse topological traversal. Since
both g5 and g4 have single fanout, no duplication is done on these gates. g3 is
duplicated to obtain gates g31 and g32 (second network from the top of the figure).
g31 is connected to g4 while g32 is connected to g5. Now, etimes(g31) = {2},
and etimes(g32) = {I}, and the invariant of Lemma 4.1 is now satisfied for g31
and g32. Similarly, on duplicating g2 and 9 1 as shown, an L-path-disjoint network
for L = 4 is obtained (bottom of the figure). Any multiple stuck-fault on the inputs
a and b of gIl, and c of gate g21 can now be removed. By the theorems discussed
earlier in this section, the computed delay and logical behavior of the resulting
circuit remain unchanged.

www.manaraa.com

OPTIMIZING LOGIC FOR SPEED. SIZE. AND TESTABILITY

a

b

a

b

a

b

Fig. 16. Example: Construction of an L-path-disjoint network

55

p

p

p

www.manaraa.com

56 R. K. BRAYTON AND A. SALDANHA

4.3. RESULTS USING THE SINGLE-PASS ALGORITHM

Results of an implementation of the single-pass algorithm for redundancy removal,
guaranteeing the delay does not increase are shown in Tables IV and V. For each
circuit the length of the longest sensitizable path, T, is first determined using an
efficient timing analysis algorithm [30]. The smallest distinct path length L > T
is also known. Using the transformation of Figure 14, an L-path-disjoint circuit is
derived from the original circuit. Finally, using Theorem 4.1 and 4.2, the first edge
of every path oflength ~ L is set to a constant. The topologically longest path in the
resulting circuit is now of length < L (~ T). Finally, standard redundancy removal
is used to derive an irredundant circuit that is no slower than the original circuit.
The algorithm thus provides the same effect as the KMS algorithm in a single-pass
following the timing analysis phase. The number of operations performed by the
algorithm is linear in the number of connections of the original circuit and the
number of distinct path lengths ~ T in "'.

The single-pass algorithm completes on all the circuits experimented with. The
CPU time on a DEC 5000, not including the timing analysis phase and the final
redundancy removal, is only a few seconds even for the largest example.

The area increase for the largest adder circuit csa 64.8 is 22%. While this
increase in area is substantial, a smaller penalty is achieved if each 8-bit block of
the adder is first made irredundant using the KMS algorithm without an increase
in the delay. In this case the penalty is only 15%. However, a decrease in area is
also not always observed for the other adder circuits when the KMS algorithm is
performed independently on each block of the adderli .

Table V shows the results of the single-pass algorithm on optimized MCNC and
ISCAS circuits. It is observed that there is no area penalty incurred by the algorithm
for the two largest circuits, rot and des. Note that straightforward redundancy
removal on the initial rot circuit slows it down.

s. Optimizing area, delay, and testability

Using the KMS algorithm any high-performance circuit (obtained manually or
by any of the performance optimization techniques of Section 2.2) can be made
fully testable (with respect to single stuck-fault or multiple stuck-fault testability).
Although a tight area bound by the KMS algorithm is still open 7, empirically, the
area penalty incurred by the KMS algorithm is very small. In summary, application
of the KMS algorithm removes long false paths while guaranteeing that the delay

6 In performing the experiment, the arrival time of the carry-input to each block is set higher than
the arrival times of the other inputs. This correctly captures the actual critical paths through the block
when it is cascaded with the other blocks to form the complete adder.

7 A weak bound of nG for the area increase has been proved where G is the number of gates in
the circuit and n is the number of distinct path lengths in the circuit between the longest viable path
and the longest path length.

www.manaraa.com

OPTIMIZING LOGIC FOR SPEED, SIZE, AND TESTABILITY

Name # Red. Imualdelay FmaldeIay
Long. True RR

ripple. 16 0 31.0 31.0 31.0
lookahead.16 0 16.0 16.0 16.0
ripple.32 0 63.0 63.0 63.0
lookahead.32 0 28.0 28.0 28.0
csa2.2 2 8.0 8.0 6.0
csa 2.2t 2 11.0 9.0 9.0
csa4.2 4 14.0 12.0 10.0
csa 4.4 2 12.0 12.0 10.0
csa 8.4 4 22.0 20.0 18.0
csa 16.8 4 38.0 36.0 34.0
csa 8.2 8 26.0 16.0 IH.O
csa 16.2 16 50.0 24.0 34.0
csa 16.4 8 42.0 24.0 34.0
csa 32.4 16 82.0 32.0 66.0
csa 32.8 8 74.0 40.0 66.0
csa 64.8 16 146.0 48.0 130.0
csa 8.2t 8 26.0 16.0 18.0
csa 16.2t 16 50.0 24.0 34.0
csa 16.4t 8 42.0 24.0 34.0
csa 32.4t 16 82.0 32.0 66.0
csa 32.8t 8 74.0 40.0 66.0
csa 64.8t 16 146.0 48.0 130.0

RR: redundancy removal
SKMS : single pass KMS algorithm
All primary input arrival time set at 0.0 delay units
t: Carry-input arrival time set at 5.0 delay units

SKMS

31.0
16.0
63.0
28.0
6.0
6.0

10.0
10.0
18.0
34.0
14.0
22.0
22.0
30.0
38.0
46.0
13.0
21.0
21.0
29.0
37.0
45.0

Gates
lmt. RR
139 139
172 172
283 283
361 361
22 18
22 18
44 36
40 36
80 72

152 144
88 72

176 144
160 144
320 288
304 288
608 576

88 72
176 144
160 144
320 288
304 288
608 576

t: Single pass KMS algorithm performed independently on each block
Final circuit verified against initial circuit

TABLE IV
Single-pass algorithm versus redundancy removal on adders

57

SKMS

139
172
283
361

18
21
43
36
79

159
83

179
167
353
335
711

84
168
172
344
348
696

www.manaraa.com

58 R. K. BRAYTON AND A. SALDANHA

Name # Red. Initial delay Final delay
Long. True RR sKMS

5xpl 1 11.0 9.0 9.0 9.0
rot 37 19.0 17.0 19.0 17.0
des 17 15.0 13.0 13.0 13.0
clip 4 8.0 8.0 7.0 7.0
duke2 2 9.0 9.0 9.0 9.0
f51m 39 18.0 17.0 16.0 16.0
misex2 6 7.0 7.0 7.0 7.0
rd73 10 11.0 11.0 11.0 11.0
sao2 9 12.0 12.0 12.0 12.0
z4ml 3 10.0 10.0 10.0 10.0
misexl 0 9.0 7.0 7.0 7.0
bw 0 20.0 14.0 14.0 14.0
z4ml 0 7.0 7.0 7.0 7.0
C1908 3 23.0 21.0 23.0 21.0
C6288 2 120.0 119.0 120.0 119.0
s641 0 19.0 18.0 18.0 18.0
s713 35 27.0 24.0 19.0 18.0
s1238 67 20.0 19.0 17.0 17.0
s9234 224 29.0 28.0 24.0 24.0
s15850 310 40.0 39.0 37.0 37.0

RR: redundancy removal
SKMS : single-pass KMS algorithm
All primary input arrival time set at 0.0 delay units
Final circuit verified against initial circuit

TABLE V

Gates
Inlt. RR SKMS

58 58 61
437 424 423

2007 2000 1992
64 61 61

190 190 190
173 139 138
94 90 90
94 83 83

126 119 119
47 42 42
28 28 31
85 85 99
30 30 30

325 322 343
2353 2350 2363

122 122 126
148 122 126
429 392 396

1735 1526 1526
3268 2954 3013

Single-pass algorithm versus redundancy removal on MCNC and ISCAS circuits

does not increase, achieves full testability, and increases the reliability of the circuit
at a small expense in area.

Our final interest is in the relationship between all three parameters of logic
optimization. The tradeoff that exists between these three parameters is illustrated
via the Pareto surface shown in figure 17. The Pareto surface represents those points
corresponding to circuits for which no single parameter may be further improved
without reducing the optimality of any of the other parameters. In particular, this
tradeoff is illustrated for the KMS algorithm. As shown, the KMS algorithm retains
the delay of the circuit while improving its testability to 100%. However, this

www.manaraa.com

OPTIMIZING LOGIC FOR SPEED, SIZE, AND TESTABILITY 59

delay

area

,

· . · . · .
: / '"__ I

........ -_ -_ _ _ X· _ .. _ _ _ _ .. :::, .. t
100% testability

Fig. 17. The Pareto surface for logic optimization

transformation is achieved at an increase in the area of the circuit.
The goal of understanding the tradeoff surface will be achieved when logic

transformations that guarantee the movement from one point on the surface to
another are devised. The next step is to develop transformations that optimally
recover area without decreasing speed or testability.

6. Delay-fault testing: Some open questions

Since high-performance testable circuits are of interest, it is imperative that the
circuits be testable for delay faults. A delay-fault is said to occur when a propagation
delay falls outside the specified limits. Two models for delay-faults have been
proposed to model delay defects on gates or along paths. Of these, the path delay
fault model is considered more comprehensive. In this section we briefly indicate
the state-of-the-art with respect to path delay-fault testability and indicate open

www.manaraa.com

60 R. K. BRAYTON AND A. SALDANHA

questions.
An important requirement in using a delay-fault model is that delay faults are

detected even in the presence of delay faults in other parts of the circuits; otherwise
the test for one delay-fault could be masked by the presence of a second fault This
requirement has led to the definition of robust path delay-fault testabililty. A path
is robust delay-fault testable (RPDFr) if there exists a test for the path delay-fault
associated with the given path that is valid under arbitrary delays along other paths.
The test for a delay-fault along path P consistsofapairofvectors < VI, V2 >. such
that the application of VI followed by V2 causes a transition along P. Additionally.
the test must guarantee that the change at the output of P is detennined by the
changes along P. In short. if a delay-fault exists along p. the output at P changes
late under < VI, V2 >. thus detecting the delay-fault.

The synthesis of robustdelay-faulttestable circuits was addressed in [17]. which
describes an approach to realize a 100% RPDFr two-level circuit by modifying
one step of a standard two-level logic minimization program [7]. Fully testable
multilevel circuits are then obtained using algebraic factorization since the RPDFr
test set remains invariant under algebraic factorization. Techniques for creating
100% robust delay-fault testable implementations of common data-path designs.
such as adders and parity trees. which cannot be synthesized using two-level logic
due to the size of the circuit. are described in [18].

Test generation for robust delay-fault testability has also been addressed. Until
recently. the only detenninistic and complete approaches to delay-fault test gen
eration published up to nowhave employed multiple-valued test generation [43;
26]. This suffers from the amount of backtracking possibly required. since each
side-input to a path under test may have several valid values assigned that allow for
a test. However. a more recent approach [34] relates a robust path delay-fault test
to a single stuck-fault test and allows the unaltered application of well-developed
stuck-fault test generation algorithms to the problem of robust delay-fault test
generation. _

Even though there are successful techniques for the synthesis and analysis of
robust delay-fault testability of circuits. there are several remaining questions that
have to be answered before delay-fault testability becomes viable for most circuit
designs. These are enumerated below.

By far the severest problem with robust delay-fault testability is the size of
the test set. Since each path in the circuit must be tested for 100% testability. this
implies that the test set size is often at least exponential in the circuit size. No
successful techniques for collapsing tests. so that several paths are simultaneously
tested are known as yet. Another problem is that even though synthesis techniques
are known for fully RPDFr circuits. the only approach is to collapse a given circuit
to two levels oflogic. Even then. circuits exists for which no two-level realization is
fully testable. These facts raise the question as to what the area and speed penalties
are for achieving high or full delay-fault testability.

The most promising avenue of exploration is the development of a weaker (and

www.manaraa.com

OPTIMIZING LOGIC FOR SPEED, SIZE, AND TESTABILITY 61

more practical) delay-fault model that provides the same delay defect coverage as
robust delay-fault testability, but can be easily synthesized, and for which the area
and perfonnance penalties can be quantified (and are hopefully small).

7. Conclusions

Logic synthesis has three principal optimization criteria, area, perfonnance, and
testability. While optimization techniques for each of these parameters is well
developed, until recently not much was understood of the interaction among the
three criteria. This paper has presented a survey of the results relating each of these
criteria.

The pairwise relationships between speed, size, and testability are well under
stood and efficient algorithms exist to explore the tradeoffs and interactions that
arise between any two parameters. However, results relating all three parameters
are still missing although the KMS algorithm demonstrates low area penalties in
achieving optimal perfonnance and testability. Since stuck-fault testability is no
longer adequate in the testing of high-speed circuits, the tradeoffs between opti
mal delay-fault testability and perfonnance must be understood better. Additional
optimality criteria, such as power dissipation, will also be of interest in the future.

Acknowledgements

This research was funded by grants from Bell Northern, Digital Equipment Corpo
ration, Fujitsu Laboratories Ltd., Intel, AT&T, California Micro, and NSF/DARPA
contract MIP-87 19546.

References

1. J. Allen. Performance-directed synthesis of VLSI systems. The Proceedings of the IEEE,
78(2):336-355, February 1990.

2. K. Bartlett, D. Bostick, G. Hachtel, R. Jacoby, M. Lightner, P. Moceyunas, C. Morrison, and
D. Ravenscroft. Bold: The Boulder optimal logic design system. In The Proceedings of the
IntenllJtionaJ Conference on Computer-Aided Design, pages 62-65,1987.

3. K. Bartlett, R. Brayton, G. Hachtel, R. Jacoby, C. Morrison, R. Rudell, A. Sangiovanni
Vincentelli, and A. Wang. Multi-level logic minimization using implicit don't cares. IEEE
Transactions on Computer-Aided Design, C-7(6):723-740, June 1988.

4. K. Bartlett, W. Cohen, A. deGeus, and G. Hachtel. Synthesis and optimization of multilevel
logic under timing constraints. IEEE Transactions on Computer-Aided Design, C-5(4):582-595,
October 1986.

5. C. Bennan, J. Carter, and K. day. The fanout problem: From theory to practice. In The
Proceedings of the Decennial Caltech VI...SI Conference, pages 69-99, March 1989.

6. L. Bennan, D. Hathaway, A. LaPaugh, and L. Trevillyan. Efficient techniques for timing
correction. In The Proceedings of the International Conference on Computer Design, pages
415-419, August 1990.

7. R. Brayton, G. Hachtel, C. McMullen, and A. Sangiovanni-Vincentelli. Logic Minimization
Algorithmsfor VLSI Synthesis. Kluwer Academic Publishers, 1984.

8. R. Brayton, G. Hachtel, and A. Sangiovanni-VincenteIli. Multilevel logic synthesis. The
Proceedings of the IEEE, 78(2):264-300, February 1990.

www.manaraa.com

62 R. K. BRAYTON AND A. SALDANHA

9. R. Brayton and C. McMullen. The decomposition and factorization of Boolean expressions.
In The Proceedings of the Internation Symposium on Circuits and Systems, pages 49-54, May
1982.

10. R. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. Wang. MIS: A multiple-level
logic optimization system. IEEE Transactions on Computer-Aided Design, C-6(6):1062-1081,
November 1987.

11. M. Breuer and A. Friedman. Diagnosis and reliable iksign of digital systems. Computer
Science Press, 1976.

12. M. Bryan, S. Devadas, and K. Keutzer. Testability-preserving circuit transformations. In
The Proceedings of the International Conference on Computer-Aided Design, pages 456-459,
November 1990.

13. M. Dagenais, V. Agrawal, and N. Rumin. McBoole: A new procedure for exact logic mini
mization. IEEE Transactions on Computers, C-33(1):229-238, January 1986.

14. J. Darringer, D. Brand, J. Gerbi, W. Joyner, and L.Trevillyan. LSS: A system for production
logic synthesis. IBM Journal of Research and Development, 28(5):326-328, September 1984.

15. G. DeMicheli. Performance-oriented synthesis of large-scale domino CMOS circuits. IEEE
Transactions on Computer-Aiikd Design, C-6(5):751-765, September 1987.

16. E. Detjens, G. Gannot, R. Rudell, and A. Sangiovanni-Vincentelli. Technology mapping in
MIS. In The Proceedings of the International Conference on Computer-Aided Design, pages
116-119, November 1987.

17. S. Devadas and K. Keutzer. Necessary and sufficient conditions for robust delay-fault testability
of combinational logic circuits. In The Proceedings of the 6th MIT Conference on Advanced
Research in VLSI, pages 221-238, April 1990.

18. S. Devadas and K. Keutzer. Synthesis and optimization procedures for robustly delay-fault
testable combinational logic circuits. In The Proceedings of the Design A utomation Conference,
pages 221-227, June 1990.

19. S. Devadas, K. Keutzer, and S. Malik. Path sensitization conditions and delay computation
in combinational logic circuits. In The Proceedings of the International Workshop on Logic
Synthesis, May 1991.

20. J. Fishburn andA. Dunlop. TILOS: A posynomial programming approach to transistor sizing. In
The Proceedings of the International Conference on Computer-Aided Design, pages 326-328,
1985.

21. M. Garey and D. Johnson. Computers and intractability: A guiik to the theory of NP
completeness. W.H. Freeman and Company, 1979.

22. G. Hachtel, R. Jacoby, K. Keutzer, and C. Morrison. On properties of algebraic transformations
and the multifault testability of multilevel logic. In The Proceedings of the International
Conference on Computer-Aiikd Design, pages 422-425, November 1989.

23. K. Keutzer, S. Malik, and A. Saldanha. Is redundancy necessary to reduce delay? IEEE
Transactions on Computer-Aiikd Design, C-lO(4):427-435, April 1991.

24. K. Keutzer andM. Vancura. Timing optimization in a logic synthesis system. In The Proceedings
of the International Workshop on Logic Synthesis, Amsterdam. North-Holland, May 1988.

25. M. Lehman and N. Burla. Skip techniques for high-speed carry-propagation in binary arithmetic
units. IRE Transactions on Electronic Computers, EC-1O:691-698, December 1961.

26. C. Lin and S. Reddy. On delay fault testing in logic circuits. IEEE Transactions on Computer
Aided Design, C-6(5):694-703, September 1987.

27. P. McGeer. On the interaction of functional and timing behavior of combinational logic circuits.
PhD. Thesis, University of California - Berkeley, November 1989.

28. P. McGeer and R. Brayton. Provably correct critical paths. In The Proceedings of the Decennial
Caltech VLSI Conference, 1989.

29. P. McGeer, R. Brayton, A. Sangiovanni-Vincentelli, and S. Sahni. Performance enhancement
through the generalized bypass transform. In The Proceedings of the International Conference
on Computer-Aided Design, page 184, November.

30. P. McGeer, A. Saldanha, P. Stephan, R. Brayton, and A. Sangiovanni-Vincentelli. Timing
analysis and delay-fault test generation using path recursive functions. In The Proceedings of
the International Conference onComputer-AiikdDesign, page 180, November.

www.manaraa.com

OPTIMIZING LOGIC FOR SPEED, SIZE, AND TESTABILITY 63

31. M. Pedram and N. Bhal Layout driven technology mapping. In The Proceedings of the Design
Automalion Conference, pages 99-105, 1991.

32. A. Saldanha. Performance and testability interactions in logic synthesis. Ph.D. Thesis. Univer
sily of California - Berkeley, October 1991.

33. A. Saldanha, R. Brayton, and A. Sangiovanni-Vincentelli. Circuit structure relations to redun
dancy and delay: The KMS algorithm revisited. In The Proceedings of the DesignAutomation
Conference, June 1992.

34. A. Saldanha, R. Brayton, and A. Sangiovarmi-Vincentelli. Equivalence of robust delay-fault
and single stuck-fault test generation. In The Proceedings of the ACM Intertwional Workshop
on Timing Issues in the Specification and Synthesis of Digital Systems, March 1992.

35. A. Saldanha, R. Brayton, A. Sangiovanni-Vincentelli, and K-T. Cheng. Timing optimiza
tion with testability considerations. In The Proceedings of the International Conference on
Computer-Aided Design, pages 460-463, November 1990.

36. H. Savoj, R. Brayton, and H. Touati. The use of image computation techniques in extracting
local don't cares and network optimization. In The Proceedings of the International Workshop
on Logic Synthesis, May 1991.

37. M. Schulz and E. Auth. Advanced automatic test pattern generation and redundancy identifica
tion techniques. In The Proceedings of the International Fault Tolerant Computing Symposium,
pages 30-35, June 1988.

38. E. Sentovich, K. Singh. C. Moon, H. Savoj, R. Brayton, and A. Sangiovanni-Vincente1li. SIS:
A sequential synthesis and optimization system. Submittedfor publication, October 1991.

39. C. Shannon. The synthesis of two-terminal switching circuits. Bell System Technical Journal,
28:59-98,1949.

40. K. Singh and A. Sangiovanni-Vincentelli. A heuristic algorithm for the fanout problem. In The
Proceedings of the DesignAutomation Conference, pages 357-360, June 1990.

41. K. Singh. A. Wang, R. Brayton, and A. Sangiovanni-Vincentelli. Timing optimization of
combinational logic. In The Proceedings of the International Conference on Computer-Aided
Design, pages 282-285, November 1988.

42. J. Sklansky. Conditional-sum addition logic. IRE Transactions on Electronic Computers,
EC-9:226-231, June 1960.

43. G. Smith. Model for delay faults based upon paths. In The Proceedings of the International
Test Conference, pages 342-349, August 1985.

44. H. Touati. Performance-oriented technology mapping. Ph.D. Thesis. University of California
- Berkeley, November 1991.

45. H. Touati, H. Savoj, and R. Brayton. Delay optimization of combinational logic circuits through
clustering and partial collapsing. In The Proceedings of the International Workshop on Logic
Synthesis, May 1991.

46. J. Vasudevamurthy and J. Rajski. A method for concurrent decomposition and factorization of
Boolean expressions. In The Proceedings of the International Conference on Computer-Aided
Design, pages 510-513, November 1990.

47. N. WesteandK. Eshraghian. Principles of CMOS VLSI design: A systemsperspective. Addison
Wesley Publishing Company, 1985.

www.manaraa.com

VLSI Architectures for Digital Video Signal Processing

P.PIRSCH
University of Hannover

Appelstr. 9A
D·3000 Hannover 1

Germany

Abstract. VLSI Architectu~s for ~al-time implementation of video signal processing algorithms
have been studied. These algorithms exhibit vexy high processing demands in teons of computation
mte and access mte which call for architectural structu~s adapted to the algorithms. Optimization
of architec~s has to consider the overall silicon area for the computation part, memories and
interconnections. VLSI implentations according to the function oriented as wen as the softw~
oriented approach will be discussed. As examples for the function oriented approach architec~s
of dedicated circuits for filtering, Dcr and block matching will be evaluated. Software oriented
implementations by multiprocessor systems based on MIMD and SIMD archltectu~s will be also
p~sented.

1. Introduction

Real time video signal processing is requested for applications such as image gen
eration, image enhancement and restauration, image analysis, and image coding.
The basic algorithms employed for image processing can be divided into

point type
filtering type
matrix algebra type.
transform type.
sorter type.

Point type are gray scale transformations, histogram equalization, requantization
and intensity mapping. Filtering type are linear phase fiiters, recursive fiiters, me
dian filters, adaptive filters, convolution/correlation, window techniques and two
dimensional operators (Prewitt, Kirsch, Hueckel, Sobel). Matrix algebra type are
geometric rotation/display, maximum likelihood estimation, pseudo-inverse calcu
lation, stochastic parameter estimation and singular value decomposition. Trans
form type are Fourier transform, cosine transform, Hough transform, Hadamard
transform and so on. The basic algorithms listed above are used for all kinds of
image processing applications. Dominating algorithms are filtering and transform
techniques.

As an application with a very strong demand for compact and cost effective VLSI
realization this paper focuses on VLSI implementations for image sequence coding.
Because three-dimensional image sequences are transformed to one-dimensional
video signals this will be mostly described as video coding. Video coding has to
reduce the transmission rate of the video signals to a specified bit rate without
reducing the picture quality below a desired level.

Originally video coding has been investigated for unidirectional services such
as TV distribution as well as bidirectional services, e.g. video phone and video

65

P. Dewilde and J. Vandewalle (eds.), Computer Systems and Software Engineerjng. 65-99.
© 1992 Kluwer Academic Publishers.

www.manaraa.com

66 P.PIRSCH

conference. Recently new activities are directed to storage of motion video on
compact disc (CD). The progress in performance of new workstations makes
storage, display, and processing of motion video on workstations feasible. For this
reason video signal processing and in particular video coding is at present of large
intererest for the community of engineers in the areas of consumer electronics,
communications and advanced work stations.

Because of world wide interest in this field international committees as CCITT,
CCIR, and ISO are already working on standardization of all kinds of image
transmission and recording services [1, 2, 3, 4, 5]. The CCITI and CCIR are
considering bit rates of the standardized hierarchy of digital channels. Starting
from the basis channel of ISON (64 kbit/s), also several of these channels are
planned for bearer services (HO = 384 kbit/s. Hl = 1536 or 1920 kbit/s). Higher
levels in the hierarchy of bearer services with bit rates of approximately 32 Mbit/s
(H3) and 140 Mbit/s (H4) are not finally defined.

Source coding methods have to be applied to reach the envisaged bit rates.
Because of high picture quality requirements, TV transmission is planned with
32 Mbit/s and HDTV with 140 Mbit/s. In order to have the ability of world wide
transmission and mass applications, for video phone and video conference services
bit rates in the range of 64 kbit/s to 1920 kbit/s are envisaged. The motion picture
expert group (MPEG) of ISO proposes a coding scheme with about 1.2 Mbit/s for
video. Latest activities of the MPEG are now directed to higher rates of about 9
Mbit/s for broadcast video and about 45 Mbit/s for HDTV. These bit rates seems
to be achievable by future high density recording media. Latest developments
on digital channel modulation techniques indicate that these rates could be also
reached on analog TV channels of about 7 MHz bandwidth.

From the channel rates discussed above it results that bit rate reduction in the
range of 8 up to 600 is needed. Very sophisticated source coding schemes make
high reductions possible without degrading the reconstructed images too much
[6]. Predictive coding and transform coding is not sufficient. Hybrid coding is
frequently proposed. A block diagram of such a hybrid coder is shown in Fig. 1.1.
The major characteristics are described below. A previous frame memory is used
for interframe prediction. Prediction of moving objects is improved by motion
compensation. Because of difficulties in segmenting moving objects and the large
overhead for specification of boundary lines of these objects, for most video coding
schemes simple block matching algorithms (BMA) are used [7]. The prediction
error is coded by a discrete cosine transform (OCT) with adaptive quantization (Q)
of the transform coefficients. Run length coding and variable word length coding
(VLC) are applied to the quantized OCT coefficients. In order to have the same
prediction at receiver and transmitter, a recursive structure is used as in all predictive
systems. A two-dimensional loop filter reduces the effects of quantization errors
on the prediction value. For non predictable areas the prediction from the previous
frame is dropped and intrafame OCT coding is applied.

www.manaraa.com

VLSI ARCHITECTURES FOR DIGITAL VIDEO SIGNAL PROCESSING

VIDEO +
DATA

VARIABLE CODED
t-'"""T'"--'" LENGTH

'--___ -..II CODING VIDEO

FILTER &
PREDICTOR

BLOCK
MATCHING

ALGORITHM

Fig. 1.1. Hybrid coding scheme (transmitter side).

SIGNAL

67

In digital storoge media special playback functions are required different from
those for communication systems. These functions are random access, high speed
search and reverse playback. For implementation of these functions cyclic in
traframe coding is proposed [8]. Further motion compensated frame interpolation
of dropped frames has to be considered for picture quality improvements.

The evolution of the standard TV results in systems with higher spatial reso
lution (HDTV). The increased bandwidth of HDTV results also in higher source
rote. Subband coding is frequently proposed for bit rate reduction [9]. By two
dimensional filterbanks the original signal is splitted in several bands of smaller
bandwidth. The low frequency band could be coded by an hybrid coding scheme
according to Fig. 1.1 where the high frequency bands are adaptively quantized and
coded by variable length codes (Fig. 1.2)

Essential for the introduction of the discussed video services is low manufac
turing cost and compact implementation of the video codec equipment. This calls
for VLSI implemention. There is a strong interaction between algorithm and the
best suited hardware architecture. Hence, high compaction will be achieved only
by adapting the architecture to the algorithm. For this reason application specific
VLSI circuits are best suited. Besides dedicated VLSI circuits also programmable
multiprocessor systems adapted to the specific application field are of interest. The
advantage of programmable systems is the flexibility to accomodate a wide variety
of application schemes and to allow modifications of algorithms just by software
changes.

www.manaraa.com

68

MEMORY

HDTV SUBBAND MUX
SIGNAL FILTERBANK I-I"'-~;...a.u.,o

Fig. 1.2. HDTV subband coding scheme (transmitter side).

P. PIRSCH

CODED

HDTV
SIGNAL

In the next section characteristics of video signal processing schemes will be
explained. Emphasize will be on description of algorithms. After that, strategies
for VLSI implementation will be discussed. Alternatives for mapping algorithms
onto architectures are incorporated. Then, the two major implemention possibilities
will be exemplified. One is direct implementation by circuits dedicated to specific
function, the other is programmable multiprocessor systems.

2. Characteristics of video signal processing schemes

The video signal processing schemes will be specified by the sequence of input
and output data and the specific computational procedure for achieving the desired
input/output relationship. The exact specification of a processing scheme will be
also denoted as the algorithm.

Algorithms can be classified according to the complexity of operations and data
access which also relates to different kind of implementations. Low level algorithms
are simple algorithms which have to be performed for every pel (picture element)
in the same manner. A typical example is two-dimensional filtering. The input
data are images. The output data can be mostly also interpreted as an image where
specific features are emphasized at the output image. The operations are performed
in a predefined sequence over the complete image, only access to neighboring
pels is needed (locality). Medium level are algorithms which generate features
and other characteristic data of the image scene. The derivation of symbols and
objects is included in this category. High level operations are object dependent
processing and operations with characteristic symbols. High level tasks are rule
based intelligent processing steps. The results of the low and medium processing
levels are classified and compared to a scene model to verify results.

Sophisticated processing schemes like the hybrid video coding scheme dis
cussed in the previous section cannot be described with a few relations. High
complexity processing schemes have to be defined in a hierarchical manner. On the
top a processing scheme can be specified by a block diagram as given in Fig. 1.1.

www.manaraa.com

VLSI ARCHITECTURES FOR DIGITAL VIDEO SIGNAL PROCESSING 69

By piecewise refinement further details of duta transfers and computations are de
rived. Depending on the level within the hierarchy, algorithms could be dermed on
groups of data such as arrays or vectors, single data (word level) or even on the
bit level.The computations and data dependencies of algorithms can be described
either by recurrence equations, program notations or dependence graphs (DOs).
An illustration of a dependence graph is depicted in Fig. 2.1. The nodes represent
the operations (computations) and the arcs the data transfers (data dependencies).
By assignment of a schedule a specific sequence in time for operations and data is
achieved which transfers the DO to a signalllow graph (SFO). The SFO can be
used as a structural description of the hardware architecture. The given SFO is a
basis of the following hardware design. The mapping of algorithms onto hardware
structures ist not unique. A large variety of alternatives have to be considered for
implementation.

_Indexi

Index j l

Fig. 2.1. IDustration of a dependence graph in a two-dimensional index space.

Of primary concern are the resources required for implementation of the algo
rithms. Resources for implementation are logic gates, memory, and communication
bandwidth. The requirements on resources are related to measures as

computation rate
memory capacity
data access rate.

The computation rate is proportional to the source rate which is the product of
image size and frame rate.

(2.1)

www.manaraa.com

70 P.PIRSCH

with nop as mean number of opemtions per pel. R. as source rate in pels per
second and Rc as computation mte in operations per second. The relation above
is obvious for low level algorithms which are perfonned in the same manner for
each pel or a group of pels. For high level algorithms this can be determined
as an average over typical image material. In Tab. 2.1 the number of operations
per pel is listed for three important low level algorithms. This table shows the
fact. that there are several alternatives for implementations of the same algorithm
with different computation rates because of different number of operations per
pel. The more a priori knowledge about the algorithms is incorporated into the
scheme the smaller the number of operations. The computation rate is only one
side. The alternatives will display also differences in the requirements for memory.
interconnect bandwidth. control. numerical behaviour and achievable parallelism.

TABLE 2.1
Mean number of operations per peI.N x N window size, p maximal displacement.

I Algorithm

1 2DDCf
DOT-product with basis images
Matrix-vector multiplication
FastDCf

[Block Matching

I Full search
2D log search

I 2D FIR Filter

2D convolution
Two ID convolutions (separable Kernel)

I Operations per pel

2N"
4N
4 log N - 2 + 2/ N

1 3(2P + 1)2
3 + 2410gp

The storage requirements are influenced by the multiple access to original
image data and intennediate results. The interconnect bandwidth depends on the
frequency of communication between memory modules and the operative part. The
requirements on control depend on the type of access (local or global) and the data
dependencies (predefined time driven vs. data dependent processing). For the Dcr
Tab. 2.2 shows the computation and access rate and the memory capacity under
the assumption that the operative part contains just one register for accumulation.
The table indicate that fast DCI' algorithms are best for the measures compared.
In tenns of numerical behaviour (truncation of word length) and control the fast
algorithms are not the best solution. It should be noted that the data in Tab. 2.1 and
2.2 are not given by asymtotic upper bounds (0 (.) because for image processing
applications N is limited (N = 8, 16).

For realization of special purpose hardware, it is important first to understand
the properties and classifications of algorithms before working on architectures

www.manaraa.com

VLSI ARCHITECTURES FOR DIGITAL VIDEO SIGNAL PROCESSING 71

TABLE 2.2
Computational rate, access rate, and memory capacity of various algorithms for implemen
tation of the 2D DCI'.
N x N window size, R. source mte.

Algorithm Computational mte Access mte Memory
capacity

Dot product with 2NJo R. (2NJo + 1)R.. N4+NJo
basis images
Matrix vector 4NR. (4N + 2)R.. 2N2+N
multiplication
Fast algorithm (4logN - 2 + 2/N)R. (9logN - 6 + 6/N)R. N2+2N
(Lee)

and implementation. Measures such as computation rate, access rate and memory
capacity are only a rough indicator for the required hardware expense.

3. VLSI Implementation

Essential for the introduction of new video services (communication and storage)
is low manufacturing cost and compact realization. For these reasons application
specific VLSI components are requested for implementation. Besides system re
quirements VLSI implementation is influenced by the production volume. High
production volume will allow full custom designed components, whereas low and
medium volume have to be designed with standard or semi custom components.

Silicon area and chip housing (number of pads) dominate chip manufacturing
cost. Both have to be minimized. For minimization of silicon area the trade-off
between the area devoted for computation, storage, and interconnections has to be
considered. The number of chips can be kept small by large area silicon. This will
result in large complexity chips containing a large number of macro blocks.

As the number of blocks per chip increases, the number of interconnections
between the blocks also increases. Silicon area for interconnections can be restricted
by architectures with local connections between the blocks. Keeping constraints on
the I/O bandwidth the number of I/O pins can be limited. The silicon area can be
used very efficient by adapting the architectures to the algorithms. Every a priori
known feature should be considered for minimization. Dummy cycles reduce the
effective computation rate. Therefore processing units should be kept always busy.

The design efforts and design errors will be reduced by regular and modular
architectures. Design of memory parts and special function blocks is becoming
inexpensive due to their high regularity and modularity. The building block concept
simplifies VLSI design by use of high level synthesis tools. New CAD tools give
the VLSI designer the required amount of flexibility to cope with the increasing
complexity ofVLSI components.

www.manaraa.com

72 P.PIRSCH

Implementation for the hybrid coding scheme (Fig. 1.1) will be tnken in the
following as a particular example. The hybrid coding scheme is based on the
macro block approach. One block of 16 x 16 luminance pels and two blocks of 8 x
8 chrominance pels are processed within the loop for fixed parameters. The block
diagram of Fig. 1.1 can be arranged to a functional space as shown in Fig. 3.1.
The functional space defines the processing sequence of functions on a high level
block basis. All functions will be processed from one macro block of image data
to the next. Hence input will be a group of pels according to the macro block size.
Mapping of functional blocks orthogonal to the processing sequence (horizontally)
results in processors or devices in a function oriented structure. Each processor
is dedicated to one or a group of functional blocks. A partitioning according
to functions supports individual optimization of processors for given functions.
Because of specialized processors compact implementation can be achieved. Since
several types of different processors are needed design efforts are very high.

TABLE 3.1
Source rate of several image formats. Net rate without blanking intervals.
Y luminance, C chrominance.

Name Image Size Frame rate Source rate
(active area) in Hz in Mpels/s

QCIF Y: 176 x 144 to 0.4
C: 88 x 72

CIF Y: 352 x 288 30 4.6
C: 176 x 144

CCIR601 Y: 720 x 576 25 20.7
C: 360 x 576

HDTV Y: 1920 x 1152 25 110.6
C: 960 x 1152

For most functional blocks of the hybrid coder special integrated circuits (Ies)
have been designed and are already available [10. 11]. The large number of different
les is an appropriate solution for high source rates as needed for broadcast video
and HDTV. The source rates for different image sequence formats are listed in
Tab. 3.1. The advances in semiconductor technology allow for moderate source
rates as for the elF format the implementation of almost all functional blocks onto
on chip. To every functional block only a section of a complete Ie is devoted.
Hence, a functional block becomes a macro cell. Presently available technologies
allow signal processing with up to 100 MHz but the elF format has a mean sample
rate of 4.6 MHz. Hence, the computation intensive blocks can be implemented with
reduced parallelism which results in smaller silicon area. Optimization of silicon
efficiency for high complexity les with macro cell structure requires a global view
for minimization of storage and interconnections.

www.manaraa.com

VLSI ARCHITECfURES FOR DIGITAL VIDEO SIGNAL PROCESSING

Functional
Space

1 Input

BLOCK MATCHING

LOOP FILTER

INTER/INTRA DECISION

PREDICTION ERROR

DCT

QUANTIZATION

INY. QUANTIZATION

YWL ENCODING

MULTIPLEXING

CHANNEL ENCODING

INY. DCT

RECONSTRUCTION

Programmable
Processor

~ Output

Mapping

Processing
Sequence

Mapping

}

}

}

}

}

73

Function Oriented
Processors

Fig. 3.1. Functional space of the hybrid coder and mapping to function oriented processors and
programmable processors.

www.manaraa.com

74 P.PIRSCH

In order to minimize buffer memories between macro cells the results of a
preceding macro cell have to be taken by the following macro cell and immediately
processed. The discussion shows that optimization of silicon efficiency for the
functional approach requires large efforts for specification and design. In particular,
changes of the requirements and algorithms result in new design cycles.

A projection of the functional space in the direction of the processing sequence
(vertical) results in one processor performing all functions one after the other
(Fig. 3.1). This mapping results in a processor with time dependent processing
according to the sequence of functions. The feedback memory is needed for the
storage of intermediate results.

The ideal solution for time dependent different operations in the same device is
a programmable processor. The mean number of operations per pel of the hybrid
coding scheme is about 160. The product with the source rates given in Tab. 3.1
results in computation rotes from 60 MOPS for QCIF to 17 500 GOPS for HDTV.
Presently avaible nsp chips offer 80 MOPS. Therefore, one processor is not
sufficient to provide the required computation rate for image fonnats above QCIF.
Parallel operation of severol processors can be easily achieved if the algorithms
allow independent processing of image segments. For the hybrid coding scheme
according to the H 261 [1] the smallest segment to be independently processed
is the macro block of in total 16 X 16 luminance pels and 2 x 8 x 8 chrominance
pels. By assignment of appropriate image segments to each processor the available
computational rate can be matched to the requirements. There are several ways to
distribute the processors over the image space. In Fig. 3.2 the image segments are
used as columns in the image space. Because processing of image sections require
for some algorithms also access to pels in neighboring image regions the image
segments have to overlap. In case of video coding the overlap results from the
search area for the block matching scheme.

As shown in Fig. 3.1 the functional space can be either mapped into a functional
approach as sequence of processors or devices which have to perform dedicated
functions or a distributed approach where each processor has to perfonn all func
tions in a defined sequence for an image segment. Best suited for the functional
approach are dedicated devices for the specified functions whereas the distributed
approach is best implemented by programmable devices. It is obvious that both
approaches also can be combined.

Matching to the requirements of computational rate and access rate can be
achieved by an appropriate parallelism. The functional approach provides a se
quence of processors which ideal support pipelining. Common for all processors
is a predefined data sequence with high throughput rale. The different tasks of the
processors have also differences in computational rate which requires individual
adaptation to algorithms by specific schemes of parallel processing and pipeling.

The distributed approach offer parallel operations independent of the algorithms.
A figure of merit for the needed parallelism can be determined by

www.manaraa.com

VLSI ARCHITECTURES FOR DIGITAL VIDEO SIGNAL PROCESSING 75

(3.1)

with npE as number of parallel processing elements and Top as average time
for one operation. Because of (2.1) npE is proportional to the source rate. With
present available technologies Tapis in the order of 20ns. Even for a hybrid codec
with moderate source rate according the CIF format npE becomes 15.

1n a similar way the required parallelism because of data access rate can be
determined. Let the required data access rate RDATA be determined when each
operand has to be read out of external memory. Hereby it is assumed that all source
data and intermediate results are stored in external memories. Because the memory
access time TAcc is limited the required number of parallel access lines would be

nACC = RDATA . TAcc (3.2)

The access time of static memory is at present in the order of 30 ns. The data
access rate of the hybrid coder for CIF image format is about 690 Mbyte/s. This
results in nACC = 23 byte. An implementation with nACC paralJel paths of 8 bit
is not worthwhile. Considering that no external access is required for data stored
in pipeline registers and in on-chip local memories the access rate to external
memories can be essentially reduced. For this reason an appropriate data transfer
concept and local memories adapted to the requirements have to be investigated to
achieve external data transfer with a few bus lines.

4. Key components for function oriented implementations

A function oriented realization can be very attractive because it has the potential
to achieve the smallest size possible by being tailored to the requirements of the
application. When mapping the operational parts of a video processing scheme
to the blocks of a function oriented realization, the data transfer between blocks
has to be taken into account. Considerable hardware expenses for formatting of
data sequences might occur if the output from anyone block is not matched to
the input sequence of the successive blocks. The specific features of the algorithm
have influence on the architecture and this will have impact on the overall hardware
complexity. Measures such as computation rate, access rate, and memory capacity
will give the system designer indications which algorithms are to be prefered from
the hardware point of view.

An appropriate optimization criterion is the minimization of the total required
silicon area under consideration of I/O constraints. Hereby the trade-off between
areas devoted to computation, storage, and interconnections has to be taken into
account. In general, there are several alternative architectures which contribute
differently to the three mentioned parts. It should be recognized that there is a
strong interaction between the algorithms and the most appropriate architecture.
In most cases specialized architectures considering all a priori known features of
algorithms are the best solution. There are a few exceptions where more general

www.manaraa.com

76 P.PIRSCH

architectures are better because of high regularity which offers cell connections
by abutment and reduced efforts for specification and design. Cell connections by
abutment reducing considerably the silicon area for connections.

In this section special realizations of three widely used algorithms from the
video coding area, namely sub band filtering, ocr, and block matching, will be
discussed. These algorithms have been selected because of the high requirements
they establish. Distinct hardware structures are examined that achieve the high
performance requirements in a small silicon area.

4.1. Filter banks for subband coding

In particular for bit rate reduction of HDTV signals subband coding is proposed.
Key components for implementation of subband coding schemes are band splitting
filter banks at the transmitter side and band synthesis filter banks at the receiver
side. At the transmitter side the video signal is separated into severnl bands by
filtering. Sampling in each band is then decimated according to the bandwidth.
Then each band is coded according the individual properties and the code words
are transmitted to the receiver. After decoding at the receiver the video signal is
synthesized by band interpolation filters.

Due to the transition between pass and stop bands. subsampling at the transmit
ter side will cause aliasing effects. Alias cancellation necessary for good picture
quality can be achieved by appropriate choice of the parameters of the coder and
decoder filter banks [12,13]. Filter characteristics which incorporate aliasing error
cancellation are Quadrature Mirror Filters (QMF) and Conjugate Quadrature Fil
ters (CQF). Both are Finite lmpulse Response (FIR) filters with a non-recursive
structure. QMFs offer a linear phase behavior. A disadvantage of QMF are small
ripples in their overall frequency transfer function. In contrnst, CQFs allow a per
fect reconstruction of the original signal, if undistorted transmission of the subband
signals is provided.

4.1.1. Computation part

Because of the high source rate, processing of HDTV signals results in high
computational rntes which can be only enabled by intensive pipelining and parallel
processing. Therefore, FIR filters are prefered because of simplicity for pipelining
intensive realizations. lmages are two-dimensional from nature. For this reason
20 filtering is applied. The convolution of the image data :z:(.) with an impulse
response h(.) is given by

l\!-IN-I

y(i,j) = L Lh(m,n):Z:(i-m,j-n) (4.1)
m=O n=O

www.manaraa.com

VLSI ARCHITECTURES FOR DIGITAL VIDEO SIGNAL PROCESSING 77

Using separable filter characteristics the number of multiplications of a 2D filter
with N x M coefficients can be reduced from N :< M to N + M. The filtering
process is then

y(i,j)
M-\

L h(m).z(i-m,j)
m=O
N-\

y(i,j) = I: h(n). ii(i,j - n)
n=O

(4.2)

A disadvantage of filters separable along the horizontal and vertical dimension
is that only orthogonal sampling pattern and not quincunx sampling pattern are
supported.

The decimation process at the band splitting filters suppresses samples which
have been determined by the expensive filter process. This is not very efficient.
By implementing the filters in polyphase structures only partial results which are
needed for the transmitted samples are determined. For polyphase filter structures
the filter is split into several parallel filter parts. The impulse response of the filter
parts are determined by a subsarnpled impulse response of the complete filter. If
the number of phases corresponds to the decimation factor, each part of the filter
processes only a certain phase component of the subsampled signal. By transition
of the decimation process from filter output to input, the filter phases can operate
with reduced clock frequency without affecting the function. This is depicted for a
2:1 decimation filter in Fig. 4.1. In this specific case the filter phases are given by
filter parts with odd and even index respectively. The polyphase structure operates
with the output sample rate which reduces the computational rate by a factor of
two. Fig. 4.2 shows the filter structures for separable 2D filters with decimation
of 2 in both dimensions. At the synthesis filter bank a similar polyphase structure
reduces also the required computations. Instead of the insertion of zeros at the input
a selection switch at the output of the polyphase filters is needed.

Filter banks of separable filters can be implemented by low pass and high pass
filters. For QMFs the high pass and low pass filters have fixed relations on their
coefficients. The transfer function H \ of the high pass is a mirror image of the low
pass filter Ho.

With (4.3) follows for FIR filters

Ho(z)
Ht(z)

ao + alz- I + a2z-2 + a3 z- 3 + ...
= ao - alz- t + azz- 2 - a3 z- 3 + .,.

(4.3)

(4.4)

The filter characteristics Go, G I for synthesis at the receiver can be directly
derived from the filter Ho, HI at the transmitter.

www.manaraa.com

78 P.PIRSCH

xi 2: 1 i.X!i)
decimation filter

filter #1
(odd index of coefficients)

filter #2
(even index of coefficients)

h(i) 1 ~ i

.4~""

x(i)

Fig. 4.1. Principle of polyphase filter structure for decimation

even horizontal filter #1

vertical filter #1 b
even

odd

vertical filter #2a
even horizontal filter #2

vertical filter #2b
odd

odd

Fig. 4.2. Separable 2D decimation filter with combined polyphase subsampling

Go(z)
G,(z)

Ho(z)
-H,(z)

y(i)

(4.5)

The filter coefficients for high pass and low pass filters of QMF filter banks differ
only in the sign of every second coefficient. This can be utilized for implementation.
The filter functions of the high pass and low pass filter can be split into two
partitions. The regular change of the sign in (4.4) results in a structure (Fig. 4.3)
similar to polyphase filters. According to the sign change, filter taps with even and
odd indices are in separate partitions of the filter. The output values of the low
pass filter are the sum of both filter partitions. Due to the QMF characteristics only
one additional subtracter is necessary for realization of the high pass filter within
a filter bank, since the difference of both partitions gives the output values for the
corresponding signaL This reduces the hardware expense by nearly 50%. A similar

www.manaraa.com

VLSI ARCHI1ECTURES FOR DIGITAL VIDEO SIGNAL PROCESSING 79

structure exists for QMF synthesis filter banks (Fig. 4.4). For filter functions with
an even number of taps the subfunctions of the filter parts # 1 and # 2 have the
same coefficients but in reverse order. This results in a more regular design.

filter #1
(even index of coefficients)

filter #2
(odd index of coefficients)

Fig. 4.3. Structu~ of a QMF decimation filter (analysis side)

filter #1
(even index of coefficients)

---y
filter #2

(odd index of coefficients)

Fig. 4.4. Structure of a QMF interpolation filter (synthesis side)

The results received so far will be comprised for band splitting into 4 subbands
by 20 filters with an impulse response N x M. Taking 4 independent 20 filters
for this filtering process the total computation rate becomes

(4.6)

Considering separable filter characteristics and taking advantage of the special
polyphase structure for QMF according to Fig. 4.3 the total computation rate will
be reduced to

(4.7)

For N and M being in the same order the reduction in computation rate is about
4N. It has been proposed to use filters with 10 taps in vertical and 14 taps in
horizontal direction [14]. For this particular example the computation rate of (4.7)
is a factor of about 47 smaller than those of (4.6). Corresponding to this factor also
the hardware expense of the computation part is smaller.

The main operations for filtering are multiplication and addition. The analysis
above counts both just as one operation even if a multiplication has a much larger
hardware expense than an addition. As a rough estimate one multiplier has the
expense of n adders if n is the number of multiplicator bits. For video applications

www.manaraa.com

80 P.PIRSCH

fixed point representation of the coefficients with 8 and 9 bit are required to
fullfil the needed stopband attenuation. Considering the sign bit, 9 and 10 bit
multipliers are needed. For a given filter characteristic the hardware expense for
realization can be essentially reduced by an implementation with fixed coefficients
instead of programmable filter coefficients. Fixed coefficients can be implemented
by hardwired shifts and adders where the number of adders is specified by the
number of nonzero binary digits. Figure 4.5 shows a typical impulse response
of a F1R low pass filter. Just by considering a specific amplitude characteristic it
is obvious that the coefficients apart from the center have a decay in magnitude
which will result in several leading zeros in binary representation. The savings
in number of adders by the decay of the coefficients magnitude is in the order of
50%. Integers can be represented by binary numbers with digits 0 and 1. As an
extension signed digit representation is possible with digits -I, 0 and 1. Recoding
of binary numbers to Canonical Signed Digits (CSD) provides a representation
with at least 50% zeros [15]. From this follows that CSD coding of coefficients
for typical low pass characteristics will result in at most 25% nonzero digits. The
filter characteristics reported in [14] confirm this fact. The binary representation
of these filters are listed in Tab. 4.1. For the specified coefficients approximately
20% nonzero digits are needed for representations. For implementation of the
filter arithmetic additions, subtractions, and hardwired shifts of several samples
are needed. Carry save adder trees are very appropriate for this. The sequence of
additions can be either performed according to the sequence of coefficients or to
the bit planes of all coefficients. By a bitplane grouping (least bitplane first) of the
filter coefficients it is possible to have a nearly constant word length of all adders.
Also early rounding and truncation of word length is supported.

TABLE 4.1
Coefficients and CSD representation of 14 and 10 tap filters [14], 1= -1

14 Tap Filter 10 Tap Filter
Coefficients CSD Coefficients CSD

ai value ai value
a6,a7 247/512 100001001 a4,aS 248/512 100001000
as, as 48/512 001010000 a3,~ 44/512 001010100
~,<l9 -45/512 00TOIOI0I a2, a7 -43/512 001010101
a3, ato -3/512 000000101 at, as -1/512 000000001
a2,all 12/512 000010100 ao,!l9 8/512 000001000
at. all -2/512 000000010
ao, a\3 -1/512 000000001

www.manaraa.com

VLSI ARCHITECTURES FOR DIGITAL VIDEO SIGNAL PROCESSING 81

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

Fig. 4.5. Typical impulse response of an FIR low pass filter

4.12. 110 scheme and internal memories

The opemtional part of two-dimensional N x M filters have to be feeded in parallel
with N + M samples. In order to lower I/O bandwidth to a filter circuit, internal
memories on chip are used. For filters along scanning direction (horizontal) a
register chain according to the number of taps can provide all needed samples in
parallel. For vertical filters a sequence of several line delays perform the same
function. A disadvantage of this approach is the large amount of memory on chip.
But the good news is that the I/O bandwidth is restricted to the video source rate.
There are alternative architectures with an exchange between I/O bandwidth and
internal memory. The amount of internal memory can be lowered for the expense
of I/O bandwidth. The total delay needed is specified by the interface between
video input and the filter operational part. A reduction of the internal memory
will increase the capacity for external memory. Complete line delays on chip are
frequently prefered because of simple control and direct feeding with the video
sample rate.

The 2D filters are implemented as a sequence of two ID filters. In order to avoid
visible artifacts the results coming out of the first filter cannot be truncated to 8 bit.
At least 12 bit representation for intermediate filter outputs is needed. Resulting
from the large line length of 1920 active pels for HDTV signals. line delays form
a major part of sub band filter banks. For this reason the vertical filter with the line
delays should be placed in front of the horizontal filter. In this case the data stored
in the line delays are 8 bit words instead of 12 bit.

The line delays can be implemented by shift register arrays and RAM circuits.

www.manaraa.com

82 P. PIRSCH

The advantage of shift register arrays is the simple control but the disadvantage is
the high power dissipation. By parallel implementation of shift registers and the
use of a multiphase clocking scheme the power dissipation and silicon area can be
considerable reduced [16]. The input multiplexers of the analysis filters (Fig. 4.2)
result in a reduction of clock frequency in the filter sections. Horizontal down
sampling by a factor of two requires the expansion of every second sample. In
hardware realization this can be easily achieved by registers with a clock enable
or by different clocking of registers. Vertical down sampling by a factor of two
requires the expansion of the data of one line over the period of two lines. This
kind of data fonnatting can be offered by FIFOs. The easiest implementation
of FIFOs is possible with double sized memories and a read/write in a ping
pong mode. The memory capacity in the FIFOs can be lowered to the minimal
amount by implementation as a rate conversion structure based on a combination
of multiplexers and synchronous clocked shift registers of different length [16].
This kind of hardware structure for the input demultiplexer combined with the
FIFO is depicted in Fig. 4.6.

#0 #1 #2 #i # I092(L/2)

~ ... ~... [l"'-----'I ~ R ~
~ ... Bfr··· iliHLj'-+----

Fig. 4.6. Multistage synchronous polyphase FIFO unit

4.13. Prototype VLSI chip for subband filter banks

Prototype chips for a lOx 14 subband filter bank have been designed for a 1.2/Lm
two metal layer CMOS process. Because of the high transistor complexity of
the filter bank an implementation with two identical chips has been considered.
The application of the polyphase structure allows an easy partitioning of the filter
bank into 2 identical chips. The HDTV signal is multiplexed twice at the input
of the subband filter. This corresponds to the parallel polyphase structure of the
architecture which is used to divide a filter bank into two parts.

Pel-by-pel multiplexed chrominance signals result in the same clocking rate
and line length as for the luminance signal. lnserting in the horizontal filter part
switchable delay parts one chip can perform operations for both luminance and
chrominance. Two chips have been designed one as analysis filter the other as
synthesis filter. Four identical chips fonn a complete filter bank for luminance and
chrominance.

www.manaraa.com

VLSI ARCHITECTURES FOR DIGITAL VIDEO SIGNAL PROCESSING 83

Fig. 4.7 shows the floor plan of both chip types. The line delays and FIFOs for
vertical filtering and subsampling occupy the largest part of the chip area. Due to
the dedicated filter arithmetic with multioperand adders, the arithmetic units are
relatively small in terms of chip area. The block horizontal filter includes memory
and arithmetic part. Both chip types have about 450 000 transistors on 90 mm2•

They have been manufactured and tested. Future CMOS technologies with smaller
geometry will allow one chip realization of one filter bank.

•
• line

delays

line
delays

. . . .
line

delays

I------fl FIFOs •

D

line
delays

horizontal
filter

analysis filter chip

.
• I

- . .-
~ · ·

line line · delays delays •
·

~ FIFOs · · ~ line line · ~ delays delays · •
•

~ vertical ~_mru ~: arithmetic
filter

:.hI .. · . . - - . -- • •
synthesis filter chip

Fig. 4.7. FloOIplans of analysis and synthesis filter bank les

4.2. Discrete Cosine Transform (OCT)

The purpose of transform coding is to convert a sequence of statistically dependent
samples into an array of relatively independent and energy compacted coefficients.
Because of high energy compaction, the OCT is the most frequently applied trans
form coding scheme. A OCT circuit has to perform continuously the transformation
of blocks X of N x N image samples to N x N transform coefficients y(u, v).
In analogy to a Fourier series expansion of periodic functions the block X can be
represented as a weighted sum of basis functions. In the Fourier series the basis
functions are cos(·) and sin(.) functions and the weights are determined by scalar
products of the original function with the basis functions. For 20 transformations
the basis functions are described as basis images. Each block X can be represented
as a linear combination of a set of basis images P uv weighted by the transform
coefficients y(u, v).

N-IN-I

X = L L y(u, v)· P uv (4.8)
u=o v=o

www.manaraa.com

84 P. PIRSCH

The transform coefficients y(u, v) are determined by the dot product between
X and <I>uu. The dot product is a 20 scalar product.

y(u,v) X 0 <I>uv
N-IN-I

L L z(i,j)' tPuu(i,j)
i=O j=O

u, v = 0,1, ... , N - 1
(4.9)

The ocr implementation according to (4.9) requires N2 dot products between
the block X and basis images. This counts 10 N 4 multiplications and additions.
Also storage of N 2 basis images of size N 2 is needed. This shows that Dcr
implementation according to (4.9) is not very efficient considering that the basis
images <I>uu can be determined as a product of two basis vectors.

(4.10)

N basis vectors <I>u form a N X N matrix C. Therefore the Dcr can be
alternatively rewritten by the following matrix product.

y = C·X·CT (4.11)

This can be seen as a sequence of ID transform, transposition of N2 intermediate
results and a second ID transform.

(4.12)

The matrix multiplication according to (4.12) requires 2N3 multiplications and
additions. Thus the computational effort of (4.12) is smaller by a factor N /2 when
compared with (4.9). Also the storage requirements are reduced. A memory for N 2

elements of C and a transposition memory of size N 2 is needed.
A VLSI realization according to (4.12) has been proposed by Totzek et.al.

[17]. A basic processing element (PE) in this structure has to contain a multiplier
followed by an adder for accumulation. Employing the idea of a linear systolic
array for implementation of the matrix-vector multiplication a high speed circuit
with high regularity is possible. The multiplications and accumulations can be
realized by carry-save adder trees. Intensive pipelining allows high clock rates.
The devised chip mainly incorporates two linear arrays with 8 PEs each, a ROM
for the coefficients of the matrix C and a RAM block for the transposition of an
8 x8 block (Fig. 4.8). The computational part of this chip consists of 16 multipliers
and accumulators. In a 1.5,I.m CMOS technology the Ie requires a silicon area of
about 92 mm2 and contains 284 000 transistors. The achievable maximal sample
rate is at least 45 MHz.

As an alternative to multiplier based realizations a distributed arithmetic can be
used where partial precalculated results are stored in ROMs. Let the transfonnation
of a vector x containing N values into a vector y given by

www.manaraa.com

VLSJ ARCHITECTURES FOR DIGITAL VIDEO SIGNAL PROCESSING

o

o

Fig. 4.8. Dcr circuit based on matrix-vector multiplication.
YMA = vector merging adder, TM = transposititon memory

y = eX

85

Output

(4.13)

Considering a 2's complement code with m bits each vector x can be described
by a sum of bit plane vectors x r •

m-2

x = -xm _12m - 1 + 2=: x r 2T

r=O

(4.14)

Splitting the matrix C into N row vectors c(n) each value y(n) has to be
deternlined by

y(n) = c(n)x
m-2

-c(n)xm _t 2m - 1 + 2=: c(n)x r 2"
(4.1.5)

r=O

Let Fn be the scalar product between the row vector c(n) and a column vector
x r • The precalculated results of Fn can be stored in a ROM which will be addressed
by the bit patterns of bit plane vectors x r • This allows to design a PE as depicted
in Fig. 4.9 which generates the values y(n) based on table look-up by a ROM and
bit serial processing. A 2D transform require 2N ROMs and a transposition RAM.
For N = 8 the number of transistors for a ROM implementing the function Fn
is in the order of that of a multiplier and accumulator. For this reason the chip
size for N = 8 is for the distributed approach in the same order as for the matrix
vector implementation based on multipliers. The throughput rate for the distributed

www.manaraa.com

86 P.PIRSCH

approach is smaller because the number of cycles depends on the word width m
and not on N. The number of transistors for the ROM is growing exponentially by
2N and not linearly with N. For this reason special additional measures to reduce
the number of transistors for table look up are reported in [18]. The idea of the
distributed arithmetic has been implemented in a chip performing 16 x 16 DCf for
video signals with up to 15 MHz [18].

x(O)
bit-serial
input
LSB first

x(N-1)

--r--.- ROM

bit
parallel

+ I -

Accumulator

Fig. 4.9. PE for DCf based on distributed arithmetic

By consideration of the special characteristic of the coefficients of the matrix
C architectural structures can be derived with reduced computational and storage
requirements. The basis vectors of the ID OCT are given by

<Pu(i) = b(i) cos [(7r/N)(i + 1/2)uJ i = 0, 1, ... , N - 1
u = 0,1, ... , N - 1

{ Vl/N i = ° b(i) =
V2/N i=l, ... ,N-l

(4.16)

By taking advantage of the periodicity in the basis vectors more efficient algo
rithms with smaller number of multiplications can be derived. These structures are
refered to as Fast Cosine Transform (FCf). Lee [19] has proposed an algorithm
that requires N /210g N multiplications and (3 N /2) log N - N + 1 additions to
perform a ID DCf. A signal flow graph (SFG) of the FCf according to Lee is
shown in Fig. 4.10. It contains an alternating sequence of data permutation stages
and arithmetic stages. In an arithmetic stage the basic operation includes addition
and subtraction followed by a multiplication.

A direct realization of the SFG would need an excessive amount of silicon area
even if fabricated in an advanced technology. However, realization examples can
be derived by using projections within the graph leading to sufficiently small im
plementations. Arterie et.a!. [20] have presented a realization that uses a projection
in the direction of wordlength to achieve a smaller silicon area. The realized chip
mainly consists of a transposition memory, a parallel to serial and a serial to parallel
converer, and an operative part. The operative part is a direct mapping of the SFG

www.manaraa.com

VLSI ARCHITECTURES FOR DIGITAL VIDEO SIGNAL PROCESSING

x(O) .. ---+----~~~~----~--------------------

x(1) ~+-~----~~~~----~--4--;~------------_

x(3) .. ++~-----4~~--~~~~--------~-------4

x(2) .. ++~-----4~~--~--~~--~--~---------4

x(7) .. ++~--.-~~~------~~--------------~~

x(6) "++~--~~~~~----~~~-;~-------4~~_

x(4) .. +-~--~~~~--~~~~--------~--~~~

x(5) "--~--'--4--~--~~~~--~--~----~---4

\ \
Oi = 1/ (2 cos ni/16) multiplication subtraction addition

Fig. 4.10. SFG of the FCf based on Lee [19]

87

y(O)

y(4)

y(2)

y(6)

y(1)

y(5)

y(3)

y(7)

of the FCT into silicon and employs dibit serial techniques. Thus every addition,
subtraction, and multiplication is assigned to a physical operator that receives its
operands as a series of two-bit groups. A chip has been developed which supports
2D DCT and IDCT with N = 4, N = 8 and N = 16 for sample rates up to 13.5
MHz [20]. It has been fabricated in an 1.25{Lm CMOS technology and contains
about 114000 transistors in a die area of 40 mm2. The advantage of a hardware
structure according to the SFG of Fig. 4.10 is the reduced expense for the computa
tional part and internal memory. A disadvantage is the complex data access which
results in large amount of silicon area for interconnect.

Besides the reduction of the hardware expense by a transfer from bit parallel
tedmiques in the direction of bit serial techniques also spatial projection techniques
can be applied. A vertical projection in the SFG of Fig. 4.1 0 can also be employed.
Through vertical projection, operations are mapped to PEs, called butterfly PEs,
that generate two result values from two input values. One result is the sum of the
two input values while the other result is their difference multiplied by a coefficient.
Between the PEs a delay and commutator network is needed for the shuffling of
data sequences. After the vertical projection a subsequent horizontal projection
can be envisioned to generate a realization example with one PE (Fig. 4.11).
A multipart RAM is needed for the data access and storage in the predefined
sequence. Besides butterfly PEs also rotator PEs can be used as a basis element for
DCT implementations. The rotator PE is more complex than a butterfly PE because
four multipliers and two adders are needed. But the number of rotators is smaller.
Ligtenberg and O'Neill [21] have reported on a DCT chip based on one rotator.

www.manaraa.com

gg P.PIRSCH

a) b)

MEMORY
In Out

PE

Fig. 4.11. a) ocr .realization based on one PE b) butterfly PE

The projection techniques allow to adapt the number and type of PEs to the
computational requirements by offering the right tIDlOuot of concurrent processing.
A ocr implementation with one PE is appropriate for low source rates as the CIF
format. Broadcast video rates need at least 4 concurrent operating PEs. Combi
nations of the discussed schemes have been also implemented. The first stage of
the fast algorithm (additions and subtractions) has been combined with proceeding
parallel inner product stages of multipliers and accumulators [IOJ. Others combine
the first stage of the fast algorithms with the distributed arithmetic LII, 18]. Combi
nations of the ocr with subtracters for prediction error determination and adders
for sample reconstruction as,needed in prediction loops have been also reported
[10,11].

4.3. Block Matching Algorithm

Motion estimation is required to improve prediction of moving objects. Block
matching is a simple scheme where motion is determined for small rectangular
objects. Hereby the actual frame is divided uniformly into reference blocks with size
N x N pels. Every reference block is compared with candidate blocks from a search
area in the previous frame. The offset between the best matching candidate block
and its reference block specifies the displacement vector v = (Vi, Vj). In general
the mean of the absolute differences is used as a matching criterion. The search can
be limited to a maximum displacement p in both directions if the maximum motion
of objects is assumed to be limited (Fig. 4.12). The block matching algorithm is
then given by

N N
8(m,n) LLI:Z:(i,j)-y(i+m,i+n)1 Iml,lnlSp (4.17)

i=1 j=1

www.manaraa.com

VLSI ARCHITECTURES FOR DIGITAL VIDEO SIGNAL PROCESSING

u min{s(m,n)}
m,n

v (m,n)l u

Previous Frame

Pre me

--.
Search Area

Reference Block

Fig. 4.12. Motion estimation based on block matching

89

(4.18)

(4.19)

The block matching algorithm requires the calculations of (2p + 1)2 sums
according to (4.17) and a subsequent detection of the minimum sum to estimate the
displacement vector from a full search of all candidate blocks. The computational
rate is directly proportional to the number of candidate blocks. Full search considers
(2p + 1)2 candidate blocks. Search strategies offers an essential reduction of the
computational rate by reducing the number of investigated candidate blocks. The
disadvantage of the search strategies is the enlarged control overhead and a much
less regular data flow. For this reason realized block matching chips are based until
now on full search techniques.

Realization of the block matching algorithm requires two types of basic PEs.
Both are depicted in Fig. 4.13. One basic PE generates the absolute difference
between two pels :z: and y from reference and candidate block. respectively. which
is then accumulated for all N2 pels within a block. Fig. 4.13a exemplifies an efficient
implementation of the magnitude operation by using the MSB of the difference
value to trigger bitwise inversion in the XOR operator as well as incrementation
in the subsequent adder. In a second basic PE, the minimum sum is searched
among the accumulated sums s(m, n) and the corresponding displacement vector
is detected. The first type ofPE will be denoted as AD (absolute value of differences
and accumulation) and the second as M (determination of minimum). The required
processing power forreal-time implementation can be achieved by a certain number
of PEs of type AD and of type M. The numbers of PEs type M can in principle be
smaller than the number of PEs type AD. Based on the computation rate the ratio

www.manaraa.com

90

a)

x y

snew
u old

v old

b)

s(m,n)

- A

B

v=(m,n)

SEL

COMP
A<B

SEL

Fig. 4.13. Basic PEs for the block matching algorithma) PE type AD

P.PIRSCH

r--

~ R ~ ew
I......

-
f- R V n ew -
b)PEtype M

could be 1 : N 2• According to (3.1) the total numer of PEs should be in the order
of

(4.20)

with Tp E as processing time of one PE. Because motion estimation is deter
mined by the luminance component allone. the source rates given in Tab. 3.1 have
to be reduced accordingly. The evaluation of (4.20) indicates that an extensive
concurrency by pipelining and parallel processing is needed. Systolic architectures
are very appropriate for this. Because of the associativity of additions and mini
mum search there are several alternative arrangements of the PEs to perform the
calculations. A systematic design has to follow a methodology similar to those
of Kung [22]. The OG of the algorithm ha!\ to be specified. By assignment of a
schedule and multiple projections several alternative SFG can be derived [23].
Fig. 4.14 shows a 10 systolic array which offers the computational power for the
CIF image fonnat with reduced frame rate. The CCIR image format will require
20 arrays with N 2 or even N x (2p + 1) PEs of type AD [23]. The systolic ar
rays require an adequnte data transport to the boundaries of the array. A total of
2N2 x (2p + 1)2 pels from reference block and search area have to be transported
into the array during calculation of one displacement vector. The corresponding
data rate cannot be transferred across the IC boundaries due to a limitation of pin
count. In order to reduce the I/O rate at the IC boundaries. local memories have to
be considered. Having stored the reference block and the search area in two local

www.manaraa.com

VLSI ARCHITECTURES FOR DIGITAL VIDEO SIGNAL PROCESSING 91

memories operating as double sized buffers in a ping-pong mode the I/O rate can
be restricted to 3R •.

Previous r__----------,
Frame
Data

o

Actual
Frame
Data

Displacement

Vector

Fig. 4.14. ID systolic array including local memory fonealization of block matching

In the literature several designs for block matching chips are reported [10,
11]. Frequently ID processor arrangements with local memories based on register
arrays according to the proposal of Yang et.al. [24] have been applied.

5. Programmable Multiprocessor System

A software oriented implementation is very attractive because it incorporates flex
ibility to accommodate a wide variety of application schemes and it allows modifi
cations of algorithms by software changes. In order to improve the overall silicon
efficiency special multiprocessor architectures have been developed which incor
porate data path and data access adapted to the required class of algorithms. With
respect to data and control flow, architectures of multiprocessors are generally
classified as single instruction, multiple data stream (SIMD) or multiple instruc
tion. multiple data stream (MIMD). Block diagrams of generic SIMD and MIMD
architectures are shown in Fig. 5.1. An interconnection network is provided for
communication between the processing units. In order to restrict the I/O bandwidth
for operand transport, memories local to the processing units aree needed for video
applications. The appropriate size of the local memories depends on the kind of
algorithms and is driven by multiple access to image data of local image segments.
Because most of the image processing algorithms allow independent processing of
image segments the PEs will be distributed over the image space (see section 3). In
this case image data have to be distributed to the PEs according to a specification
of image segments. The need for communications between the PEs can be avoided
by matching the local memory size to the maximum requirements of the set of
algorithms to be considered.

SIMD multiprocessors are very efficient for applications where the employed
algorithms allow identical operations for many parallel data streams. Most low
level algorithms with fixed time dependent processing sequence are of this kind.

www.manaraa.com

92

a)

b)

Fig. 5.1. Architectures of SIMD (a) and MIMD (b) multiprocessors
PU = processing unit, CU = control unit, POM = program memory

P.PIRSCH

The efficiency of SIMD decreases for algorithms with result dependent alternative
sections. During operations of alternatives. parts of the PEs have to be disabled
and idle. while the remaining PEs perform the operations. This loss of efficiency
for data dependent processing can be reduced for MlMD architectures because
independent processing of all PEs is possible.

Multiprocessor systems can be built of cascaded processor clusters where each
cluster is matched to subsets of the algorithms. A frequent proposal is to use pro
cessor clusters assigned to low level, medium level, and high level algorithms.
The number and type of processors considers the particular requirements of each
level. Instead of the sophisticated systems based on processor clusters in the fol
lowing linear arrangements of bus connected processors will be discussed because
of simplicity.

www.manaraa.com

VLSI ARCHITECfURES FOR DIGITAL VIDEO SIGNAL PROCESSING 93

5.1. Improvement of multiprocessor performance

The design goal is to achieve system implementation with smallest hardware com
plexity. Besides scalibility and regularity of systems, the overall silicon area can
be taken as a design criterion. The silicon area of the total multiprocessor system
is influenced by the performance efficiency which is the quotient of achievable
performance and peak performance. For performance efficiency the efficiency in
terms of computation rate and access rate is of particular interest.

The efficiency of the access mt~ and the size of local memories depends on
the data transfer concept. Two loading schemes for bus connected multiprocessor
systems are depicted in Fig. 5.2. The first considers dual-ported local memories.
During parallel processing of all PEs the data of the following image segments
are loaded. Double sized local memories with independent read/write access are
needed. The second scheme requires only single-ported local memories. immedi
ately after loading of one local memory the assigned PE starts processing. This
kind of loading scheme is only possible for MIMD controlled processors. Non
overlapped loading and computation is not very efficient for SIMD controlled
processors. During loading of one local memory all other PEs idle. Processing can
start after having loaded all local memories. The discussion above shows that the
MIMD controlled PEs have the advantage of hulf size local memories in case of
non-overlapped loading. But for the silicon efficiency it has to be considered that
MIMD is more complex because of its own controller and program memory.

The computation rate of the PEs can be increased by considering the type of
operations and the inherent parallelism of the algorithms. The number of concurrent
operations within a PE can be increased by pipelining and parallel data paths. A
PE with increased parallelism in the data path is displayed in Fig. 5.3. This kind
ofPE is very appropriate for low level algorithms as filtering, transformation, and
block matching. The offered concurrency cannot be utilized for medium and high
level algorithms. For this reason separate additional processing units are proposed.
As a result the effective computation rate is algorithm dependent. The discussed
sophisticated PE structures are of advantage as long as tbe increase of effective
computation rate is larger than the increase of silicon area.

The literature reported about several multiprocessor systems for video signal
processing [25, 26, 27, 28, 29]. The structures, basic elements, and technologies are
different. For this reason the overall performance and the needed silicon area using
advanced technologies are very difficult to compare. A first attempt to achieve
a unified performance measure for multiprocessor architectures independent of
technology constraints have been investigated in [30].

5.2. Design Examples

Two design examples of multiprocessor systems will be discussed here. One based
on a SIMD architecture, the other is a sophisticated MIMD architecture.

www.manaraa.com

94 P. PIRSCH

PE 1
!LOADI !LOADI

PROCESS PROCESS

PE2
!LOADI ! LOAD!

PROCESS PROCESS

1 LOAD! ! LOADI
PE3 PROCESS PROCESS

PE n PROCESS
!LOA~

PROCESS
ILOA~

"t
a)

PE 1 ILOADI PROCESS I LOADI PROCESS

PE 21 I LOADI PROCESS I LOADI PROCESS

PE 3! , PROCESS I LOADI PROCESS I LOADI PROCES~

•
PE n I PROCESS I LOADI PROCESS I LOAg

• t
b)

Fig. 5.2. Loading schemes for multiproces~or systems
a) Overlapped loading and computation with dual-ported local memories
b) Non-overlapped loading with single-ported memories

A multiprocessor IC with SIMD architecture has been proposed by Micke et
at. [25]. One multiprocessor IC contains an I/O unit for video data, a sequencer
with instruction decoder ~r access to instructions in an ex.ternal program memory,
and n = 6 identical PEs. A block diagram of the PE is shown in Fig. 5.4. A
PE consists of local memory with 512 x 16 bit RAM and a 16 x 16 bit register
file, and a processing wtit for operations on 16 bit operands. Special pipeline
implementation with serially connected ALU, multiplier, accumulator and shifter
supports arithmetic operations as

L la - bl, l::(a - b)2 or 2:) a - b) . c. (5.1)

Pipelining within the arithmetic unit offers up to four operations in one cycle.
The PEs are connected via an interprocessor communication link that allows left
or right shift of data along the PE string. Input and output of data are performed
over a data bus common to all PEs within the chip.

The described multiprocessor IC has been realized in a 0.7 pm CMOS technol
ogy. A clock frequency of 25 MHz is achieved and this supports a peak processing

www.manaraa.com

VLSI ARCHITECfURES FOR DIGITAL VIDEO SIGNAL PROCESSING

LOCAL MEMORY

Ace

SHIFT & LIM

PU
---,

L.... ____________ _

-----------~

Fig. 5.3. Processing element with increased parallelism in the data path

95

rate of 150 M accumulations per second. In tenns of arithmetic operations this
amounts to a peak rate of 600 MOPS per chip. For applications requiring higher
processing power a parallelizalion of several multiprocessor chips is possible.
A system containing several multiprocessor chips on a printed board has been
proposed [25] for implementation of the hybrid coding scheme for video phone
applications. In this system each multiprocessor chip has its private external buffer
memory. One of the parallel operating multiprocessor chips perfonns the overall
system control providing its sequencer for addressing of instructions in a single
program memory.

The complete system consisting of 48 PEs supplies a peak processing power
of 4800 MOPS. The reported implementation offers hybrid coding of elF video
signals with 12.5 Hz frame rate. The hybrid coder and decoder functions require a
total of about 600 MOPS in case of 12.5 Hz frame rate. Thus the system operates
with an efficiency in the range of 10 to 15 % for this application.

A higher efficiency can be achieved by MIMD architectures which allow in
dependent processing of the individual PEs. A MIMD multiprocessor architecture
adapted to the requirements of video coding is reported in [27]. The PE architecture

www.manaraa.com

96 P.PIRSCH

LOCAL
DATA MEMORY - AGU

110 512 x 16 81T

REG REG
ARRAY

16 x 16 81T 2 x 16 81T

~
Ope ran dA

16 '
~

16' Operan d 8

ALU r A 8
Ax8

A8S (A)
82 INTER
j PROC.

'8 1 COMM.
ACC

SHIFT

Result Bus
L ,

16

Fig. 5.4. PE of a SIMD based multiprocessor chip [25]

is depicted in Fig. 5.5.

A PE contains local memory (LM) for storage of source data and intermediate
results, an address generation unit (AGU). an arithmetic processing unit (APU). a
mediwn level processor (MLP). and a programm memory (pGM). The proposed
size of the local memory is 512 x 32 bit. In order to have high flexibility a
micro controlled AGU is considered. The AGU is generating address sequences
of the LM. Furthermore, controlling of the APU is provided by the AGU. It
is micro programmable and supports the processing of a sequence of tasks, e.g.
motion estimation followed by FIR filtering and 20 OCT. The proposed APU is
adapted to window based low level algorithms and can operate in parallel 4 data
streams. It performs in pipelining a sequence of ALU-operations. multiplication,
accwnulation over a window, and shift and limit for normalization of sums. For

www.manaraa.com

VLSI ARCHITECTURES FOR DIGITAL VIDEO SIGNAL PROCESSING

AGU

PGM MLP

LOCAL MEMORY
DUAL PORT RAM

512 x 32 BIT

SHIFT & LIMIT

FEEDBACK BUS

Fig. 5.5. PE of a MIMD based multiprocessor architecture [27]

97

16

the access to two operands a register file of 128 x 8 bit is included. The APU
is based on data paths with 8 bit representation. Nevertheless, the mode shifters
between multiplier and accumulator enable the APU to perfonn 16 bit operation
in two consecutive clock cycles. During the first clock cycle the lower bytes of all
operands are processed. Processing of the upper bytes of the operands is perfonned
during the following clock cycle. High level operations, medium level operations,
and down load of the microprogram for the AGU are processed by the medium
level processor (MLP).

The MLP has memory mapped bidirectional access to the local memory and
write access to the microprogram RAM of the AGU. A powerful RISe core can

www.manaraa.com

98 P.PIRSCH

be employed as MLP. In case of 40 MHz clock rate a peak performance of 640
MOPS is achieved in the 8 bit mode. The computation rate is half for the 16 bit
mode. Simulations of the architecture have shown that for video coding schemes a
performance of 20 to 30 % of the peak computational rate should be achievable.

Comparison of the two presented multiprocessor architectures indicate that the
first SIMD architecture based on simpler PEs offers to integrate several PEs on one
chip whereas the more sophisticated MlMD architectures results in 1 PE per chip.
But the overall performance for the second solution is higher because of the larger
inherent parallelism and higher flexibility for processing. It has been estimated that
for a hybrid video coding scheme 8 chips of the SIMO architecture have the same
performance as 6 chips of the MIMD architecture.

5.3. Conclusion

Compact and cost effective realization of real-time video signal processing systems
call for VLSI implementation. In order to cope with the high performance require
ments architectural structures with extensive pipelining and parallel processing are
requested. The VLSI implementation has to consider the trade-off between com
putation part, memory and I/O bandwidth. The most compact implementation can
be achieved by VLSI circuits dedicated to special processing tasks. Hereby all a
priori known features have to be incorporated into the architecture. For implemen
tations with high flexibility for modifications. programmable systems are needed.
The number of processing elements of SIMO and MIMD multiprocessor systems
can be kept small by matching the architectural parameters to the requirements of
considered algorithm classes.

References

[1] CCITT Study Group XV: Recommendation H 261. Video Codec for Audiovisual Services at px64
kbit/s. Report R 37. Geneva. July 1990

[2] CCIR Recommendation 60 1: Encoding parameters of digital television for studios; in Recom
mendations and Reports of the CCIR. vol. XI. pt.llTU 1982. Geneva, Switzerland

[3] CCIR: Draft new report AD/CMTf on the digital transmission of component coded television
signals at 30-34 Mbit/s and 45 Mbit/s. CCIR-Document(1986-199O) CMTf/1l6

[4] H. Yasuda: Standardization activities on multimedia coding in ISO, Signal Processing Image
Communications 1 (1989) pp. 3-16

[5] ISO-IEC JTCl/SC2/WGll MPEG-90/176 Rev. 2. (1990)
[6] Draft revisiQn of Recommendation H. 261: Video codec for audiovisual services at px64 kbit/s,

Image Communication. vol. 2, no. 2.pp. 221-239. August 1990
[7] H.G. Musmann. P. Pirsch. H.J. Grallert: Advances in Picture Coding. Proc. IEEE. vol. 73, no. 4.

pp. 523-548. April 1985
[8] A. Nagata.l Inoue. A Tanaka. N. Takeguchi: Moving picture Coding system for digital storage

media using hybrid coding. Image Communication. vol. 2. no. 2. pp. 109-116, August 1990
[9] H. Gharavi. A. Tabatabai: Sub-band coding of monochrome and color images. IEEE Trans.

Circuits and Systems. vol. CAS-3S. pp. 207-214. February 1988
[10] P.A. Ruetz. P. Tong. D. Bailey. D. Luthi. P. Ang: A high-perfonnance full-motion video com

pression chip set. to be published

www.manaraa.com

VLSI ARCHITECfURES FOR DIGITAL VIDEO SIGNAL PROCESSING 99

[11] H. Fujiwara, M.L. Liou, M.T. Sun, K.M. Yang, M. M:lruY:lmn, K. Shomum, K. Oyama: An
all-ASIC implementation of a low bit-mte video codec, to be published

[12] R.E. Crochiere, L.R. Rabiner: Multimte digital signal processing, Prentice Hall (1983)
[13] J.J.T. Smith, T.P. Barnwell: Exact reconstruction techniques for tree-structured subbandcoders,

IEEE Trans. on ASSP (June 1986), 34, No.3, pp. 434-441
[14] U. Pestel, K. Groger: Design of HDTV subbnnd filterbanks considering VLST implementation

aspects, IEEE Trans. on Circuits and Systems for Video Technology, Vol. I, No. I, pp. 14-21,
MIlICh 1991

[15] K. Hwang: Computer Arithmetic, Principles, Architectures and Design, John Wiley & Sons,
1979

[16] P. Pinch, K. Groger, M. Winzlcer: VLSI lIIChitectures of two-dimensional filters for HDTV
coding, to be published in conferencen records IS CAS '92, San Diego

[17] U. Totzek, F. Matthiesen, T. Noll: DCT-Bausteine filr die Codierung von HDTV-Signalen,
mikroelektronik, vol. 5, no. 3, pp. 124-127,1991

[18] M.-T. Sun, T.-C. Chen, A.M. Gottlieb: VLSI Implementation of a 16x16 Discrete Cosine
Transform, IEEE Tmns. Circuits and Systems, vol. 36 (1989), no. 4, 610-617

[19] B.L. Lee: ANew Algoridlm to Compute the Discrete Cosine Transform, IEEE Trans. Acoustics,
Speech,andSig. Proc., vol. ASSP-32 (1984), no. 6,1243-1245

[20] A. Artieri et al.: A One Chip VLSI for Real T.une 1\vo-Dimensional Discrete Cosine Transform,
Proc. IEEE Int. Symp. Circuits and Systems, Helsinki (1988),701-704

[21] A. Ligtenberg, J.H. O'Neill: A Single Qlip Solution for an 8 by 81\vo Dimensional DCT, Proc.
IEEE Int. Symp. Circuits and Systems, Philadelphia (1987),1128-1131

[22] S.Y. Kung: VLSI Army Processors, Englewood Cliffs, NJ. Prentice Hall, 1988
[23] T. Komarek, P. Pirsch: Array lIIChitectures for block matching algorithms, IEEE Trans. on CAS,

vol. 36, no. 10, pp. 1301-1308, October 1989
[24] K.-M. Yang, M.T. Sun, L. Wu: A family of VLSJ designs for the motion compensation block

matching algorithm, IEEE Tmns. on CAS, vo136, no. 10.pp. 1317-1325,October 1989
[25] Th. Micke, D. MUller. R. HeiB. ISON-Bildtelefon-Codec auf der Grundlage eines Army

Prozessor-IC, mikroelektronik. vol. 5. no. 3. pp. 116-119, 1991
[26] P. Weis, Video-Pamllelprozessor zur Bild-codierung und -vemroeitung auf einem Chip,

mikroelektronik, vol. 5, no. 3, pp. 112-115,1991
[27] K. Gaedke, H. Jeschke, P. Pirsch, A VLSI based MIMD architecture of a multiprocessor system

for real-time video processing applications, submitted to dIe Joumal of VLSI Signal Processing
[28] Y. Suzuki et. aI., Single board video codec using VLSIs for 64/128 kbit/s CIF video, Proc. of

Int. Picture Coding Symposium, pp. 3-1. 1990
[29] T. Nishitani, Pamllel video signal processor configuration based on overlap-save technique and

its LSI processor element: VISP, Joumal of VLSI signal processing, vol. I, no. I, pp. 25-34, 1989
[30] H. Jeschke, K. Gaedke. P. Pirsch, Multiprocessor performance for real-time processing of video

coding applications, submitted to IEEE Trans. on CSVT

www.manaraa.com

Compiler Techniques for Massive Parallel Architectures

LOTHAR THIELE
Institute of Microelectronics,

Universitiit des Saarlandes, 1m Stadtwald, D-6600 Saarbriicken, Germany

Abstract. The paper is concerned with the design of massive para.llel architectures. It contains
an overview of existing compilation techniques. In particular, tools for a mechanical and provably
correct design trajectory are described. New results concerning a. hierarchical design methodology
based on the class of piecewise linear programs are presented.

1. Introd uction

The paper is concerned with parallel architecture design for massive real-time
computations.

There is a strong relation between the application domain (e.g. image sequence
processing, computational algebra, combinatorial optimization, real-time signal
processing, computer graphics), algorithm domain (e.g. sequential vs. parallel com
putations, imperative vs. functional program, regular vs. complex data flow, static
vs. dynamic parallelism, determinism vs. non-determinism) and the architectural
domain (e.g. general purpose vs. application specific processor, synchronous vs.
asynchronous communication, massive vs. large grain parallelism). For example,
in a high-throughput application domain a general purpose sequential processor is
not capable to satisfy the imposed real-time constraints. Even a parallel generjll
purpose architecture (e.g. MIMD or SIMD) may not be appropriate because of
the control overhead, the high area and power consumption and the restricted I/O
bandwidth between processors, to input/output ports and to memory banks. On
the other hand, if a regular array architecture (e.g. systolic array, wavefront array)
is chosen, the algorithm to be implemented should match the regular communica
tion structure and parallelism. This impact parallel algorithms and architectures
have on each other can be efficiently used to design algorithms and architectures
simultaneously. As a result, the architecture may reflect properties of the imple
mented algorithm and vica versa.

In the design of (parallel) computer architectures software and formal languages
play an eminent role in many different aspects.

It is generally accepted that CAD is necessary to master the complexity of
designing architectures for high-throughput algorithms. Reasons for this as
sessment are the required fast turn around time, the iterative design strategy
which necessitates a fast proto typing and the certifiable correctness of the
design.
Within the whole design trajectory there may be at some place a compiler
involved whose primary inputs are a specification of the algorithm to be im
plemented and a partial speCification of the target architecture. As a result,

10\

P. Dewilde and J. Vandewalle (etis.). Computer Systems and Software Engineering. 10\-\50.
Ii:) 1992 Kluwer Academic Publishers.

www.manaraa.com

102 L. THIELE

a specification of software and hardware is obtained which specifies the hard
ware/software implementation of the given algorithm and which fulfills the
input specifications. The class of algorithms and architectures the design sys
tem is intended for influences the form of input specifications, e.g. language
vs. graphical/interactive, imperative vs. functional language.

A formal design language is often used in order to guarantee that the stages of
a design are consistent and formal verification methods can be used to proof
correctness, i.e. to proof that at any stage of the design the gi ven specifications
are satisfied. A formal design language is also necessary if provably correct
design methods are implemented in the design system.

The path from input specifications to an architecture involves the solution
of problems whose complexity depends on the chosen classes of algorithms
and architectures. For example, it is well known that the use of general pur
pose parallel architectures suffers from the complexity of the corresponding
compilation problems. If we restrict to the class of regular array processors,
the mapping problems are comparatively goodnatured. Relations between ar
chitectural style and compilation problems can be found on all levels of an
architecture, e.g. a specialized, non-orthogonal and restricted instruction set
of a processor may lead to a simpler architecture but necessitates complex
compilation strategies.

Yet another trade-off is the partitioning of the architecture into programmable
and specialized components. Consequently, software for programming general
purpose subsystems may be part of the final result of a design process.

Finally, a remark similar to that at the end of the preceding paragraph is ap
propriate: the greater flexibility in designing software and hardware components
simultaneously may lead to higher performance in comparison to restricting the
design space.

It is useful to distinguish two aspects of design systems for signal/image process
ing architectures: environment and tools. The tools perform the transition from the
input specification to the specification of the implementation, including the spec
ification of hardware and software subsystems and the assignment of functions to
processing elements. Consequently, the tools reflect the methodology based on con
sistent mathematical models and methods. The environment is responsible for the
interfacing between the designer and the available methods and tools, for the data
management and documentation of the design. Corresponding to this classification,
the paper is organized as follows: Section 3 is devoted to different aspects of the
environment, including requirements and a survey of existing implementations. In
Section 4, a set of requirements for CAD tools is described. The basic methodology
underlying the synthesis of piecewise regular architectures is presented in Section
5. The described methodology only covers the architectural design problem.

www.manaraa.com

COMPILER TECHNIQUES FOR MASSIVE PARALLEL ARCHITECTURES !O3

2. Targets

Referring to the above mentioned complexity of the architecture design problem
and the necessity to exploit special properties of application domains and algorithm
classes we are lead to the conclusion that there will be no unique design approach
suited for all target classes of applications, architectures and algorithms. Therefore,
at first the main scope of the paper should be defined.

2.1. TARGET ApPLICATIONS

The area of applications we are going to consider can be characterized by the need
of massive real-time computations. Examples of potential application domains are
image (sequence) processing, computer graphics, computational linear algebra, real
time signal processing and seminumeric algorithms. In the case of image process
ing, there is the necessity for high-throughput architectures if local operations on
the given image sequence must be performed (e.g. 2 and 3 dimensional filtering,
source coding, image restoration algorithms). As the corresponding algorithms
operate at the pixel level, many identical operations on neighboring data are re
quired. Consequently, the data flow exhibits modularity, regularity, locality and
massive parallelism. Similar observations hold in the cases of matrix computations
in algebra, computer graphics and some combinatorial or semi numeric algorithms.

2.2. TARGET ARCHITECTURES

The paper is concerned with a target architecture that can be classified referring
to a taxonomy used in [1] as follows:

Regular Array As the target application leads to massive real-time computa
tions, the following constraints for the target architecture can be formulated:
massive parallel computation, intensive multilevel pipelining, local intercon
nection scheme, distributed memory and computing power. Special classes
suited for VLSI implementa.tion are known as regular processor arrays, e.g.
systolic or wavefront arrays [2, 3J. These arrays consist of a regularly con
nected mesh of identical processing elements that perform a time invariant
processor function. It runs out, however, that a generalization of this model is
necessary for a variety of reasons: (1) the algorithms to be implemented very
often lead to a more complex interconnection structure which may be called
piecewise regular [4, 5, 6J, (2) even if regular algorithms are implemented, the
consideration of finite resources and the consideration of input/output data
leads to non-regular processor arrays and (3) the concept of piecewise reg
ular processor arrays directly fits a hierarchical design methodology, see [7].
In particular, architectural design for the class of piecewise regular arrays is
considered in this paper. The whole system can be partitioned into regular
subsystems. Therefore, the target architecture is composed of a set of com
municating regular arrays which consist of locally interconnected processing

www.manaraa.com

104 L. THIELE

elements equipped with local computing power and local memory. Because
of the piecewise regularity, there will be the possibility to also include the
specification of external memory, of I/O processors and of external control
processors in the design process.

Limited programmability The target architectures belong to the class of appli
cation specific processors. In order to reduce the control, area and power
overhead the programmability of the individual processing elements exactly
fits the given class of algorithms and applications. On the other hand, the pro
posed tools and methodologies can be also used to solve compilation problems
for general purpose parallel processing systems.

Control Flow As well the restriction on an interconnection structure which is
local in time and space as the piecewise regular architecture directly leads
to a local control flow concept. Control data locally propagate through the
system and determine the interconnection structure and individual functions
of the processing elements.

Multilevel Pipelining and Parallelism The hierarchical nature of available design
methodologies enables the consideration of internally pipelined processing ele
ments. These elements may internally contain arithmetic pipelines or parallel
ari thmetic uni ts. Consequently, this property can be used to introduce bit
level pipelining, efficient bit-parallel or bit-serial processing elements.

In addition, the special importance of this class of target architectures is based on
the fact that they can be designed automatically by provably correct and optimal
synthesis methods, see e.g. [8, 9, 3].

2.3. TARGET SPECIFICATIONS

The design of architectures starts with a behavioral specification of the algorithm
to be implemented. This formal specification of the required input/output map
of the architecture is usually not directly related to the structure of the archi
tecture. This information is added in the course of the design processes. For the
description of the required system behavior either imperative or functional de
scription styles are possible. One of the main characteristics of algorithms that
can be mapped efficiently on the class of target architectures described above is
their static parallelism. As parallelism is infused before run-time an efficient map
ping of the algorithm on a target architecture can be determined at compile-time.
Consequently, one does not have to trade-off the time spent to determine the par
allelism at run-time and the expected savings by exploiting it. The close relation
between algorithms and architectures necessitates a regular data flow imposed by
the specification. In case of an imperative program, e.g. a concatenation of nested
loop programs enclosing a body with local conditionals and affine dependences be
tween the variables satisfies this requirement. In a functional style, algorithms with
a (piecewise) regular data flow can be represented by a set of quantified equations
involving linearly indexed variables. As a language describing different stages of a

www.manaraa.com

COMPILER TECHNIQUES FOR MASSIVE PARALLEL ARCHITECTURES 105

Functional Specification

Circuit

placement routing

Layout

Fig. 1. A simplified design flow between levels of abstraction and vertical hierarchy. The marked
boxes are the subject of the tools described in Section 5

design process, a functional specification is preferable, e.g. because of the inherent
single assignment property, the type checking possibilities, the support given to
guarantee a provably correct design, a direct relation between functions defined in
the language and subsystems of a corresponding system, and the close syntactical
and semantic relationship to usual mathematical expressions.

3. Environment

As the main topic of this paper are the tools necessary for designing architectures
for high-throughput applications, we will look at the necessary design environment
only briefly.

3.1. DESIGN TRAjECTORY

There are different views of the design trajectory for the above defined target
archi tecture. In particular, we will distinguish between the design flow between
different levels of abstraction (vertical hierarchy), the design flow within a certain
level (horizontal hierarchy) and a global view of an interactive design trajectory.
In chapter 4, we will present a more detailed view of the design flow corresponding
to the tools for architecture synthesis.

Fig.l represents a simplified design flow between different levels of abstraction.
The functional specification formally states the input / output map of the desired

www.manaraa.com

106 L. THIELE

I System H Array H Processor H Component I
horizontai refinement

Fig. 2. A simplified design flow within the level of signal flow graphs, horizontal hierarchy

system. This may be done e.g. in defining fixed points of the desired map. At
this level, there is no corresponding algorithm defined. The behavioral specification
contains more informations on the implementation of the desired function. Con
sequently, the algorithm design phase is concerned with problems like numerical
robustness and design of an inherent parallel algorithm which may fit to the ar
chitecture in mind. The task of the subsequent parallelization is to increase the
degree of parallelism, e.g. by representing the specification in a single assignment
form. As a result, parallelism in the algorithm is explicit and the partial order
between the corresponding operations can be represented in form of a dependence
graph. Architecture synthesis is concerned with the assignment of operations to
computational cells, with the scheduling of these operations, and with the speci
fication of the cells. This structural information can be represented in form of a
hierarchical data flow or signal flow graph. At this stage, the (partial) specification
of the desired architecture enters the design flow. After that, high-level synthesis
is concerned with designing control paths, data paths and with logic synthesis. If
a realization as an integrated circuit is aimed for, a layout generation phase must
be added. The management of an iterative design flow, the consistency between
the levels of abstraction, the simulation and verification between and within the
levels are tasks of the design environment. The tools mainly are concerned with
one level or with conversions to neighbored levels.

The purpose of the following Fig.2 is the representation of the design flow within
one level of abstraction (horizontal hierarchy). As an example, the level of signal
flow graphs is chosen. The signal flow graph corresponding to the system level
contains the major subsystems of the architecture, their input and output ports
and communication channels. The next level of refinement contains a more detailed
representation of these pieces, which may be processor arrays. These arrays may
consist of single processing elements whose signal flow graph (including terminals)
is specified in the next level. Moreover, it may be desirable to refine the data types
also, starting from a symbolic form, adding more and more information such as e.g.
floating point representation and bit level representation. An arbitrary number of
intermediate refinements is possible. The hierarchical structure may be created by
the designer while specifying the systems behavior. The tools to be described in
Section 5 enable a processing of this structure, i.e. flatten the hierarchy or create
addi tionallevels by parti tioning. Moreover, the tools relate the specification wi thin
a certain level of abstraction to the next or previous level. As there are different
interpretations of hierarchy in different levels, processing hierarchy is one of the

www.manaraa.com

COMPILER TECHNIQUES FOR MASSIVE PARALLEL ARCHITECTURES

ALGORITHMS

Functional
Specification

ARCHITECTURES

Structural
Specification

...

APPLICATION
SPECIFICATION

DESIGN
SPECIFICATION

ARCHITECTURE
SYNTHESIS

EVALUATION

Fig. 3. Global view of the design trajectory

107

most important design transformations. Consequently, tools must support this
strategy of stepwise refinement of specifications (behavior and structure) thereby
guaranteeing a provably correct design. Obviously, this form of horizontal hierarchy
is related to the concept of modules, e.g. subroutines, in programming languages
(refinement of functions and refinement of data types).

The last view of a design trajectory we are going to consider is the global view
as shown in Fig.3. Here, the iterative design trajectory through all hierarchical
levels is emphasized. The structural specification restricts the final architecture,
e.g. by giving a maximal number of processing elements, power and/or area lim
i tations and I/O constraints. The step towards the design specification explores
the algorithm and architecture space. Therefore, (numerically robust) algorithms
which satisfy the required I/O map and fit the architecture in mind (inherent par
allelism, regular data flow) must be developed and described in a behavioral way.
In a similar way, as a result of the architecture development a. partial specifica
tion of the final a.rchitecture is obtained. This specification is used to guide the
subsequent archi tecture design phase and the corresponding design decisions. The
tools presented in this paper are mainly concerned with the architecture design
phase. Finally, in the evaluation domain, the result of the design is evaluated. The
performance measures and properties are used to initialize the next iteration.

www.manaraa.com

!O8 L. THIELE

3.2. REQUIREMENTS

The main responsibilities of the environment are the management of the design
data and the documentation of a design, the embedding of the tools and the user
interface. In the following, these tasks are visited individually:

Tool Management: Usually, a design process covers various levels of abstraction.
This is due to the hierarchical design flow. In the course of a design, more and
more detailed informations about the specification of a design are contributed
by the user. At the same time, the design system generates the corresponding
specifications and informations about the generated architecture. Referring to
the above described design trajectory, e.g. the following views of a design are
involved: sequential algorithm specification in an imperative language, parallel
specification in a functional form, representations of dependencies in a data
dependency graph, data flow or signal flow representation. If the design is
refined to the level of VLSI layout, more levels are necessary, like circuit levels
and layout. The tools deal with restricted views of the design data as each tool
individually only solves a portion of the whole design problem. Consequently,
the environment must guarantee the consistency between the various levels of
refinement and must contribute interfaces between the corresponding tools.
This consistency is one requirement to generate provably correct or at least
verifiable designs. Moreover, because of the complexity of the design trajec
tory, it is necessary to manage the design flow. Therefore, informations about
current design activities, missing steps in the design trajectory and a set of
applicable tools at the current stage of the design must be available. These
meta data about the design should be offered to the designer in order to guide
his design decisions.

User Interface: Because of the complexity of the design problem we need as well
the possi bili ty for fast prototyping as a close interfacing between the designer
and the design environment. The designer must be supported in bringing his
own skills and experiences in the development of the current architecture.

Data Management: One of the main tasks of a design environment for the class
of architectures described above is to storage and manage the design data.
This task is closely related to the above described tool management. The
following terms characterize some of the main requirements of the data man
agement system: consistent management of design data, support of a gradual
refinement of a design, version mechanism, concurrent data access by several
designers working at the same project.

Finally, the implementation of the environment must lead to an efficient and fast
handling of design data and communication between various tools at various levels
of abstraction.

In the Section 4.2, some design systems for parallel signal/image processing
architectures will be described which (partly) take the above mentioned criteria
into account.

www.manaraa.com

COMPILER TECHNIQUES FOR MASSNE PARAU.EL ARCHITECTURES 109

4. Tools

The tools which are embedded in a design environment reflect the mathematical
models and concepts on which the design methodology is based. In the following we
concentrate on the class of tools responsible for the transition between a given input
specification (behavior) and the specification of the designed architecture including
hardware and software (structure). Usually, the representations are based on a
certain formal language in order to cope with verification and simulation. We do
not attempt to include tools for solving problems on lower levels of abstraction, e.g.
datapath synthesis, controller synthesis, microcode optimization, logic synthesis,
placement, routing.

4.1. REQUIREMENTS

At first, some general requirements for the tools are listed.
Embedding and Languages: The tools must fit in the whole design environment.

The design language usually covers several levels of abstraction in order to
avoid an insufficient communication between the tools. The (mathematical)
formal languages that are used to formulate the design steps and to prove their
correctness depend on the levels of abstractions the tools are dealing with.
They are usually completely different form the (broad range) design language
used in the environment. Because of these tasks, languages of the tools are
more restricted as design languages, i.e. they represent special views of the
design language. Examples oflanguages used for this purpose are ALPHA [10J,
OCCAM [11, 12], UNITY [13, 14] and Crystal [15]. The interfaces between
tools and environment must guarantee a consistent relation between both
kinds of languages.

Verification and Simulation: There must be the possibility to verify the de
sign at any stage of the design process. There are mainly two possibilities to
achieve this goal: simulation and verification. Whereas simulation compares
input/output maps for certain sets of stimuli, verification is concerned with
proving that a (sub)system obeys the corresponding specification. Both tech
niques must be combined as well on the tool as on the environment level. More
over, the mathematical methods and models used should fit into a provably
correct design trajectory, at least within the scope of one level of abstraction.

Scope: Following the remarks in Section 2 concerning the target algorithms, ar
chitectures and applications, the scope of the tools should cover also unavoid
able deviations from regularity assumptions. These irregularities inevitable
occur if array boundaries, external memory access, control flow generation
and special boundary processor are taken into account in the design, i.e. are
part of the final specification, see e.g. [4, 5, 16, 17].

Stepwise Refinement: There are two different aspects of the principle of stepwise
refinement.

www.manaraa.com

110 L. THIELE

At first, the tools should support gradual horizontal refinement of a specifica
tion. For example, the designer of a system for computer graphics may at first
specify the fact, that his system consists of a pipeline of processors assuming
that the processors are already defined. Then these 'auxiliary' subsystems are
defined assuming that some components are already defined. The designer
may proceed in this manner until he reaches e.g. a fine grain specification of
the system. Note, that this stepwise refinement not only concerns the behav
ioral specification but also the specification of the architecture as provided by
the design system.
Secondly, the given input specification should be transformed to a specifica
tion of the architecture gradually by adding more and more constructs which
specify the structure of the realization and which guarantee that the imple
mentation constraints are satisfied. This vertical stepwise refinement approach
enables the designer to interact with the design system at any stage and to
influence the design by his own skills.

Parameterization: The use and generation of parameterized subsystems should
be possible in order to s~orten design times and to incorporate previous expe
rience into a current design. Parameterization may concern the problem size,
e.g. the number of input bits of a regular array multiplier. Moreover, also the
specifications are required to be parameterized. Consequently, size parameters
must be kept symbolic as far as possible and tools must deal with reduced
quantified representations of the specification. Examples of design systems
which support generic designs are HiFi [18] and Crystal [15].

Main tasks assigned to the tools are the assignment of functions to certain
processing elements (assignment) and to certain times (scheduling). Of course,
the performance of the final architecture depends on factors like efficiency, degree
of load balancing, relation between I/O rate and computing power, number and
complexity of processing elements, fault tolerance and many others. The following
list contains some of the more involved basic tools which help to construct an
architecture by taking some of the above factors into account.

Partitioning Usually, regular architectures such as systolic arrays or wavefront
arrays are designed to solve problems of a fixed size. These full-size arrays
can be extended in a modular way when the size of the problems grows.
However, the size of the hardware is limited by the available resources. The
problem of designing problem-size independent arrays is called partitioning
in the following. There are two main classes of partitioning problems: lack of
dimensions and lack of processors. In the first case, the spatial dimension of
the designed architecture does not fit given constraints. For exa.mple, instead
of realizing a two-dimensional processor array it is sometimes advantageous to
deal with a linear array only because of the trade-off between local memory,
I/O bandwidth and computation rate. There are many results concerning the
solution of these problems, see e.g. [19,20,21,22]. The second problem is con
cerned with designing architectures with limited, fixed number of processing.

www.manaraa.com

COMPILER TECHNIQUES FOR MASSIVE PARALLEL ARCHITECTURES 111

elements, see e.g. [23, 24, 25, 26, 27, 28]. A solution to the above mentioned
problems should sa.tisfy the following requirements:
-'- A unified approach to the solution of the partitioning problem should be

able to realize all known partitioning schemes like multiprojection (fit given
dimension of architecture), active clustering (fit given number of processing
elements) and passive clustering (increase efficiency of architecture).

- The partitioning must also provide for a systematic generation of control
structures, i.e. the generation of control signals and the specification of
control signal paths and control processors.

- The partitioning must fit into a hierarchical design trajectory based on the
principles of stepwise refinement. Therefore, partitioning must be compati
ble with other tools like localization and control generation.

- The following factors must be taken into account: (1) minimal overa.ll com
putation time, (2) minimal control overhead and (3) balanced trade-off be
tween external communication and local memory.

An approach which combines these issues is given in [29].
Control Generation While going from behavioral specification to a structure,

constructs must be added to the corresponding programs that account for the
control of processing elements. In particular, processing elements may execute
different operations at different time instances. Again, there are requirements
an efficient control scheme must satisfy:
- Control signals must be handled equivalently to data signals in order to

fit into a homogeneous design trajectory. Consequently, a regular and local
flow of control signals is desired.

- The generation of control signals and the corresponding specification of
control circuits within the processing elements must be done automatically.

- Processors generating the control signals (usua.lly at the border of the array)
must be specified.

- There should be the possibility to optimize as well the complexity of the
control circuits within the processing elements as the complexity of the
control signal generation as the interconnection paths for these signals.

Results on automatic generation of control can be found in e.g. [30, 17].
Localization The class of piecewise regular algorithms as used for the input spec

ification is restricted not only by static parallelism but also by a regular con
nection of regular dependency structures. Therefore, it would be desirable to
include specifications which have non-uniform and broadcast dependencies.
The task of localization is to convert these algorithms into algorithms with
local and uniform dependencies. As a result, a considera.bly more general in
put/output specification of the architecture can be included in the design
trajectory, see e.g [31, 32, 33,34]. In addition to these applications of a local
ization tool, the following problems can be addressed:
- Perform a local distribution of input data from terminals to processing

elements and the distribution of output data to corresponding terminals.

www.manaraa.com

112 L. THIELE

- Perform a local distribution of control signals from either input terminals
or special control processors. Consequently, the localization ca.n be used for
the generation of local control signals.

- Consideration of constra.ints concerning the interconnection structure of
the designed a.rchitecture (e.g. lack of communication channels, re-routing).

Parallelization Very often, a.n input specification is given as a.n imperative pro
gram formulation containing nested loops (Fortra.n do-loops or C for-loops).
The main reason why we consider these loop programs is that there a.re algo
rithms of a wide spectrum of applications available in this form a.nd nested
loop programs are important sources of pa.ra.llelism in numerical computation
programs. In practice, such programs are easy to test a.nd modify since they
ca.n be directly compiled and executed on a sequential computer. Obviously,
the data or operation dependencies a.re distributed among the prescribed ex
ecution ordering imposed by the nesting statements a.nd the implicit depen
dencies imposed by the loop body. In order to extract the pa.ra.llelism of such
a.n apparently completely sequential formulation a detailed analysis of the de
pendencies among the statements is necessa.ry_ Consequently, the a.im is to
construct an equivalent program in an equational form. This conversion to a
single assignment form enables a representation by a dependence graph. De
spite of the fact that ma.ny publications ha.ve been devoted to this subject,
see e.g. [35, 36], an implement able procedure valid for a broad class of loop
programs has not been derived yet.
The following requirements should be taken into account:
- The tool should be applicable to a broad class of loop programs.
- As a result, a.n algorithm in a.n equational form is expected.
- The tool should accept and process pa.rameterized specifications such that

no unfolding is necessary. Otherwise, the fact that the complexity of the
parallelization is dependent on the problem size prohibits the use of the
tool for large size applications.

There are different solutions to the above problems known which are based
on different mathematical models and methods. Some of these approaches will be
reviewed in the next section.

4.2. METHODOLGIES AND SYSTEMS

At first, some systems devoted to the design of parallel architectures for signal
and image processing systems are described. From the many existing approaches,
e.g. Diastol [37, 38], VACS [39], SDEF [40], Advis [41], Presage [42],COMPAR
[43], Cathedral [1], HiFi [18,44], ALPHA [10] and Crystal [15], only the last four
approaches will be covered. COMPAR will be covered in Section 5.

The design system Cathedral, see e.g. [1], does not fit completely into the frame
work of this paper. This high-level architectural synthesis system is devoted to

www.manaraa.com

COMPILER TECHNIQUES FOR MASSIVE PARALLEL ARCHITECTURES 113

regular designs only partly. It is planned, that five different methodologies are em
bedded in this system each addressing a specific target domain for architectures
and algorithms. The system is based on the broad range, pure functional language
SILAGE. This single assignment language can be used for behavioral and structural
specifications. In particular, Cathedral IV [45] is targeted at application specific
regular array design. The underlying implementations and design methodologies
use the Cathedral I,II and III tools for the design at low levels of abstraction. The
embedded design transformations are based on the classical approach of Moldovan
and Rao. Recently, some piecewise regular extensions have been adopted, see [45].

The HiFi system [44, 18] addresses the implementation of the design environ
ment and the set of tools following the requirements given above. It provides an
environment for the specification and design of VLSI implement able synchronous
and asynchronous processor networks. The physical low levels of the design trajec
tory are taken care of by the CAD framework Nelsis. As in HiFi, various powerful
tools are integrated around an ob ject-oriented design data base. The basic princi
ples of HiFi can be described as follows:

The design language is an object-oriented implementation of the AST (ap
plicative state transition) model. This language provides the hierarchical spec
ification of behavior, a timing model and enables the hierarchical specification
of asynchronous and synchronous processor networks. The semantics of the
AST language is based on a combination of classical finite state machine de
scriptions and functional programming. Consequently, the main concepts are
state (in extension of a pure functional approach), function and function con
trol (as borrowed from state machine descriptions).
The tools and specifications are fully parameterized in order to support a
generic design strategy. Because of the functional aspects of the AST model,
parameter instantiation is based on the A-calculus concept. Pattern matching
enables the derivation and passing of parameters.
As well the implementation, the data management system and the design lan
guage are object-oriented. Consequently, in contrary to other approaches, the
functional aspects of the design language and the transformations is simulated
by a proper implementation.

The system contains tools for simulation, graphics, user interface and interactive
tools for the design of regular and irregular architectures. Within the development
of the design system, many theoretical results concerning the mathematics of ar
chitectural design have been published, e.g. in the areas of loop parallelization and
partitioning [36, 46].

The next two systems to be described, ALPHA DU CENTA UR [10] and Crys
tal [15] are missing the environment. Consequently, they cover only a few levels
of abstraction. On the other hand, the languages and implementation chosen are
more adapted to the mathematical models and methods of the architectural de
sign phase. In ALPHA DU CENTAUR [10], the design language is the functional
equational language ALPHA. It is adapted to the notation of recurrence equations

www.manaraa.com

114 L. THIELE

and describes them in a global functional way. Consequently, the semantics of
this language is overloaded as it can be interpreted as a. behavioral and structural
specification. The implemented system is based on program rewriting as during
the design process the initial program is adapted to the final architecture in a.
provably correct way. The transformations can be done interactively.

The approach taken in Crystal [15] is similar. Again, the system is based on a
overloaded functional language and the principle of stepwise refinement is used.
The language Crystal is based on the A-calculus and consequently, fully parame
terized. Moreover it inherited many properties from standard functional languages
such as strong typing and pattern matching facilities. In extension to ALPHA DU
CENTA UR, a meta-language has been defined which is designed to provide the
designer with a formal tool to implemented transformation schemes. Meta-Crystal
enables the construction and manipulation of pieces of crystal text.

Finally, some remarks on the different mathematical approaches to the design
of (piecewise) regular architectures are given. As it is not the purpose to give
a complete list of theoretical results in this area, some representative results are
described. Moreover, detailed informations on results concerning specific tools, like
partitioning, localization and control generation, are contained in the next section.

The potential of VLSI for massive parallel computations was first recognized
by Kung and Leiserson [2J. After they introduced the term systolic array for reg
ular mesh connected synchronous processor arrays many algorithms from areas
like signal processing, image sequence processing, linear algebra and combinato
rial optimization have been mapped onto this computer architecture. About the
same time, synthesis methods for VLSI processor arrays received much attention.
In principle, behavioral descriptions are transformed in functions that distribute
operations over time and space. The first pioneering results have been obtained
by Kuhn [47J who used linear index transformations for relating algorithms and
their systolic implementation. This result has been recovered later by Moldovan
[8J. The extensions of Quinton [48J, Miranker et al. [49] and Capello et al. [50] to
this work resulted in the theory of regular iterative algorithms as proposed by Rae
[9,51]. He linked results obtained so far to the work of Karp, Miller and Winograd
[52J on uniform recurrence equations and he introduced considerable extensions to
the synthesis methodology. These methods are used increasingly to parallelize loop
programs for massive parallel architectures, see e.g. [53,54].

The approaches mentioned so far have a simple geometrical interpretation: The
given single assignment algorithm is represented by a dependence graph. The de
pendence graph represents the available parallelism of the given algorithm as it
determines the partial order of operations. The mapping of uniform recurrence
equations onto processor arrays corresponds to an affine transformation of the
index space and a subsequent interpretation of the coordinates as time and space.

Recently, methods which aim at mechanical, provably correct synthesis methods
are receiving more and more attention, see e.g. [14, 12, 15]. They a.re based on
formal program transformations and use concepts like functional programming

www.manaraa.com

COMPILER TECHNIQUES FOR MASSIVE PARALLEL ARCHITECTURES 115

languages, ,\-calculus and strong typing of functions.
The approach proposed in the next section combines as well the geometric

interpretation as the stepwise transformation of specifications. The former serves
to design (in a sense) optimal architectures whereas the latter is responsible for
the certifiable correctness of the design.

5. A Piecewise Regular Design Methodology

The main subject of this chapter is a methodology which serves to fullfil the
requirements given in Section 4.1. It is based on experiences with the system
COMPAR (mmpiler for Massive £.arallel ARchitectures), see e.g. [43). At first,
the main characteristics of the proposed approach to the architecture synthesis
and some aspects of a software implementation are given. Then, the mathematical
models and methods on which the design trajectory is based are introduced.

5.1. IMPLEMENTATION

The implementation of COMPAR is based on the following main principles:

MathematicaL modeLs and methods The class of algorithms which can be effi
ciently mapped on processor arrays (piecewise Linear algorithms) has been
carefully chosen. On the one hand, it is general enough such that most al
gorithms of the target applications are covered. On the other hand, parame
terized tools which solve the design problem can be constructed. Even after
applying transformations like mixing hierarchical levels, partitioning, schedul
ing, the resulting architectural specification is a piecewise linear program which
can be processed further. As a result, a homogeneous design trajectory is ob
tained. The main mathematical methods used are operations on index sets.
The fact, that the required operations, like cutset, convex hull, affine mapping,
can be carried on parameterized index sets is responsible for the efficiency of
the tools, e.g. no enumeration of operations or index sets at compile time is
necessary.

Programs-ALgorithms-Architectures The semantics of a piecewise regular/linear
program is 'overloaded', i.e. the program can be interpreted as a behavioral
description in form of an algorithm and as a structural description as an
architecture. The programs are formulated using a notation similar to the
UNITY [13) program scheme. This programming notation has been developed
especially for the design of parallel programs using the concept of stepwise
refinement of program specifications. In particular, we are using the equational
scheme, a functional subset of UNITY. The interpretation of a piecewise linear
program as a specification of hardware considers also the control of processor
functions and interconnection paths that are automatically generated as part
of the design trajectory.

www.manaraa.com

116 L THIELE

Fig. 4. Software model of the COMPAR design system

Transformative Approach All the above mentioned properties lead to a param
eterized stepwise refinement approach to the design problem. The overall pro
cess of mapping consists of a sequence of program transformations that is
applied to an initial program. These stepwise refining program transforma
tions gradually change a given program until it meets the given architectural
specifications. In order to guarantee a correct design trajectory, any program
transformation must be semantic preserving. To this end, the tools like con
trol generation and partitioning are further refined into basic transformations
which can simply be proven to be correct. As a result, we are lead to a certi
fiable correct homogeneous design flow.

The software implementation of the COMPAR system is described now. The
main software components are displayed in FigA. In the following, the main parts
of the system are described in detail. Here, we concentrate on the tools as their
implementation is closely related to the underlying methods and models.

The I/O-Manager dispatches designs. A design is given by a program that
represents a piecewise linear algorithm. The program is parsed and converted
into an internal representation. During the design session, program transfor
mations will be applied to this internal representation. Apart from opening
and saving designs, the I/O-manager consists of backend generators for dif
ferentoutput formats and target architectures. For example, it is possible to
create an OCCAM program that permits the simulation of a design on a net
work of transputers. Also generators connected to commercial VLSI design
systems are implemented.

After creating the internal representation of the given program, the user may
activate the Graphical and Numerical Simulator. The results of the evaluation
phase may influence further design steps.

www.manaraa.com

COMPILER TECHNIQUES FOR MASSIVE PARALLEL ARCHITECTURES 117

..
o
~
"5 e
u;

math.
basic

Local Data Manager

Fig. 5. Refinement of the tra.nsformer in Fig.4

While the instances described until now basically represent the environment of
the system, the Transformer is responsible for the proper process of mapping.
The optimization unit selects a tool or a sequence of tools that convert the
program into an input/output equivalent program. Each tool calls and controls
a number of parameterized basic program transformations (see Fig.5) that
represent entities that can be proven correct. However, the software hierarchy
may be further refined to the level of mathematical basic routines

This shell model makes it possible to develop levels of software (e.g. basic trans
formation or tools level) independently from other levels. The consequences result
ing from modifications of data structures may be limited (information hiding). Also
the access of the Transformer to the internal representation of the design is lim
ited to an encapsulated software instance called Local Data Manager. This shell
structure of the software is ideally supported by the technique of object oriented
programming and in particular by the programming language C++ that has been
chosen as the programming language for the implementation of the COMPAR
system.

S.2. PROGRAM-BEHAVIOR-STRUCTURE

The purpose of this chapter is to introduce the class of algorithms we are consider
ing called piecewise linear or piecewise regular algorithms and their representation
by a class of programs called piecewise linear/regular programs. In addition to
[55, 6, 34], hierarchical constructs are added to the specification of the notations.
It is shown that such a program can be directly related to the specification of

www.manaraa.com

118 L. THIELE

Algorithm
behaviour

Program
structure

f-~'::"':":--'--~~ Implementation

Fig. 6. Relation between a.n algorithm, a program, and its implementation

a piecewise linear/regular processor array including the hierarchical specification
of processing elements, interconnection paths and the distribution of register ele
ments. This relation between algorithms, programs and processor array is shown
in Fig.5.

5.2.1. Program Notation

In the following the notation introduced by Chndy and Misra [13] is adopted. In
particular, a functional subset of UNITY is used. As we are not going to develop
a programming language, e.g. type declarations are not defined. Instead, the main
purpose is to define a formal notation which describes the mathematical models
underlying the piecewise regular design strategy.

An equation of the form x = y defines that the variable x has the value of y.
The sign II is used in order to separate equations. For example, y = z II x = y
defines that x and y have the value of z. Note, that the ordering of equations is
arbitrary. Moreover, we define that (a,b) = (c,d) is equivalent to a = c II b = d.
The term (a, b) is called a tupel of a and b.

The notation of a quantified equation can be used to describe sets of equations
easily. The quantified equation (III: I E I :: S[I]) where I C ZS is an index space,
I E ZS is an index vector and each Sri] is an equation denotes an enumeration of
equations. Of course, Sri] may also be a set of equations or even a set of quantified
equations. For example, (IIi, j : i = 1/\ 1 ~ j ~ 2 :: xli, j] = x[O, j]) is equivalent
to xlI, 1] = x(O, 1]11 x(1,2] = x[O,2].

Now, the notation for a function can be introduced. At first, x = f(y, z) defines
that x has the value of f(y, z) where f is a function with the two arguments y and
z. Following the above notation, (a, b) = f(c, d) denotes that f defines both, a and
b.

The notation for conditional equations can be seen using the following equation
w hi ch defines t hat x has the absolute value of y:

x = y if Y 2: 0 '" -y if y < 0

The cases are separated by the symbol "'. The expression y < 0 is called the
conditional for the case x = -yo If the conditional is of the form Sri] if I E Ie,
then Ie is called condition space of the corresponding case.

Before we proceed, a simple example serves to explain the notations introduced
so far.

EXAMPLE 1. The following example describes an algorithm for the matrix-vector
product C = A.B. The module has the form:

www.manaraa.com

COMPILER TECHNIQUES FOR MASSNE PARAU.EL ARCHITECTURES

mavecl
in

(lIi,j: 1 $ i,j $ n :: a[i,j]),
(IIi: 1 $ i $ n :: b[i]))

always --w,j: 1 $ i,j $ n ::
eli, j] = 0 if j = 1

'" e[i,j - 1] + a[i,i]b[j] if j> 1)
out

(IIi: 1 $ i $ n :: e[i,'n])

119

In addition to the above given notation, we have included a module name ('mavecl'
in the example) and a notation for defining input and output variables. They are
given by tupels of quantified variables.

It is useful to apply functions not only to variables but also to sets of variables,
To this end, the following notation is used: The expression I((III: I E I :: a [I]))
denotes that I is applied to a set of variables which contains alI] for all I E I.
Equivalently, the result of a function can define a tupel of quantified variables.

EXAMPLE 2. The example describes the same algorithm as given above. Now, the
inner product is hidden in a module ealled 'inpro'. The two modules are defined as
follows:

mavec2

(lIi,j: 1 $ i,j ~ n:: a[i,j]),
(IIi: 1 ~ i ~ n :: b[i]))

always
--w: 1 $ i $ n ::

e[i] = inpro«lIj: 1 ~ j ~ n:: a[i,j]),{lIj: 1 ~ j $ n:: b(j]))
Qll1

(IIi: 1 ~ i ~ n :: eli])

inpro

(1Ij: 1 ~ j ~ n :: a[j]),
(lIj : 1 ~ j ~ n :: b(j])

always --w : 1 ~ j ~ n ::
e(j] = 0 if j = 1

'" e(j - 1] + a[j]b[j] if j > 1)
out

e[n]

www.manaraa.com

120 1.. THIELE

The definition of a. module as given above needs some more explanations:
No recursive module definitions are allowed, e.g. a. module must not need its
own definition.
All variables are local to a module. Therefore, in the preceeding e.xample, it
would be possible to use a, b and c instead of ii, b and c, respectively.
Each module defines a (global) function whose identifier is the name of the
module.
The mechanism of applying a function to a tupe! of quantified variables is more
involved. Let us suppose that a function 1 is applied to a quantified variable as
follows: b = 1((11 I : I E I:: a(g(I)])). Here, 9 is an arbitrary integer function
which maps I E I to the index g(1) of the variable a. We suppose that g(I) is

one-to-one for I E I. For example, if I = (~), I = {i,j : 1 $ i,j $ n} and

g(I) = i + nj, then we have b = 1«(11 i,j: 1 $ i,j $ n:: ali + nj])).
Now, the input definition of the module defining 1 must contain a quantified
local variable. Moreover, it is required that the definition of the local variable's
index space is equal to that of the qu.antified variable to which the function is
applied. In the example, the input of the module defining 1 may contain a
quantified variable of the form (II I: I E I:: a[h(I)]).
This constraint is based on the fact that we interpret the relation between
function application and module definition as a quantified equation. In the
example, we have (II I : I E I:: a[h(I)] = a[g(I)]}. It is not specified how the
variables and the (parameterized) index spaces are passed from the function
application to the module. For example, principles known from functional
languages, e.g. >.-calculus, may be used.

5.2.2. Index Spaces

Obviously, index spaces are of importance in the previously introduced program
notation. Moreover, it will be shown that most of the mathematical methods used
in the design trajectory are based on operations on index sets. Examples of these
operations are

convex hull of index spaces,
cutset of index spaces,
projection of index spaces, and
affine transformation of index spaces.

Moreover, in order to transform programs without enumeration of index spaces,
and to process parameterized index spaces we restrict ourselves to the class of
linearly bounded lattices.

DEFINITION 1. A linearly bou.nded lattice is an index space of the lorm

I = {I: [= A~ + b 1\ C~ 2: d 1\ ~ E Zl}

where A E Z,XI, bE Z', C E zmxl and d E zm.

www.manaraa.com

COMPILER TECHNIQUES FOR MASSIVE PARALLEL ARCHITECTIJRES

••••
••• ••

1 •
0-+--+-----

o 1 j-

~
I I . , ,
o 1 5 10

Fig. 7. Examples of linearly bounded lattices

121

•• I·
15 i-

Obviously, {II:: C II: :::: d 1\ II: E Z'} defines the set of all integer vectors wi thin a
polytope. The poly top is characterized by a set of linear inequalities. This set is
mapped on I using an affine function, e.g. I = All: + b.

It can be shown, that the following property holds:

PROPERTY 1. The set of linearly bounded lattices is closed under the operations
convex hull of union, cutset, projection and affine transformation.

The following example serves to clarify the above notations.

EXAMPLE 3. Let us suppose that an index set 11 is defined by A = E, where E
denotes the unity matrix, and b = O. Then we have 11 = {I: I = II: 1\ C II: ::::

d 1\ '" E Z'}, or equivalently, II = {I: CI:::: d 1\ [E Z'}. For I = (;),

c ~ (~l }l)' d ~ (-~n) and n ~ 4 th, ind" "t ,hawn an th, I'fi hand

side of Fig. 7 is obtained. Moreover, Fig. 7 also shows the linarly bounded lattice
12 = {i :i = "'1 + 3"'2 1\ "'2 ::; "'1 ::; 4 1\ "'2 2:: 1}. It is obvious, that I is not
necessarily a lattice or a convex set.

The implementation of the above given basic operations on index sets uses a set
of basic mathematical routines as shown in Fig.5. It contains algorithms for

linear programming, projection, Fourier- Motzkin elimination,
elimination of redundant inequalities,
Hermite Normal Form and Smith Normal Form computations and
convex hull of union of lattices and polytopes.

In order to be more precise, it is shown that the set of linearly bounded lattices
is closed under affine transformations and cutsets.

Affine Transformation of Linearly Bounded Lattices: As an example of
operations applied to index spaces, the affine transformation is elaborated. To this
end, the affine integer function

f(1) = AI + I

www.manaraa.com

122 L. THIELE

is defined which is one-to-one for all J E I. Now, the affine transformed index space
J = f(I) is defined by

J E I ¢} f(I) E J

With I = {J: J = All: + b 1\ Gil: ~ d 1\ II: E Zl} we directly obtain

f(I)={J: J=AAII:+(Ab+1) A GII:~d 1\ I\:EZl}

EXAMPLE 4. 11 of Example 3 is transformed using A = (1 n - 1) and 1 = O.
We obtain

I(!') ~ { J, J ~ (1 n - 1) (::) A (~1 ~J (::) ~ (~n) }
For n = 4 the index space 12 of Example 3 results.

Cutset of linearly bounded lattices: The set K = In J with

1= {J: J = AI\: + b A GI\: ~ d A II: E ZiT}

is given by

K = {K: K = All: + b A All: + b = ~ + s 1\ Gil: ? d 1\ T€ ? u 1\

II: E ZiT 1\ € E ZIJ}

Obviously, this index set is not yet in the form of a linearly bounded lattices.

Therefore, we evaluate the set of vectors (;) which satsify AI\: + b = R~ + s.

The results concerning the integer solution to a set of linear equations given in the
Appendix are used. If a solution exists, the set

is obtained for some scalar r E Z and vectors and matrices e, f and G, H. Using
this representation the representation of K in standard form is obtained:

Similarly, it can be shown that the set of linearly bounded lattices is closed
under the other mentioned basic operations.

www.manaraa.com

COMPILER TECHNIQUES FOR MASSIVE PARALLEL ARCHITECTURES 123

5.2.3. Piecewise linear and piecewise regular algorithms

The class of piecewise linear algorithms has been defined in [33, 34]. This class
extends the notion of regular iterative algorithms [9] that may be related to regular
processor arrays such as systolic and wavefront arrays. Piecewise linear algorithms
have the following properties:

A piecewise linear algorithm consists of a set of equations that relate linearly
indexed variables. For example, x[P 1+ fJ = F(... , y[QI - dJ, ...) with I E ZS
and the rational matrices and ·vectors P E Qn:r xs , Q E Qny X8, f E Qn:r and
d E Qny is such an equation. F denotes an arbitrary function and x, y are
indexed variables.

Equations are quantified, i.e. an equation defines the indexed variable on its
left hand side, say e.g. x, for a set of values of the iteration vector I. Such
a set is called iteration space. For example, (II I: I E I:: x[P 1+ fJ =
F(... , y[QI - d], ...)} where I is an index space is such a quantified equation.
The affine expressions PI + f and Q I - d are called index functions. These
index functions map I E I to integer vectors, i.e. PI + f E zn~ and Q I +
d E zny for all I E 1. Each equation may be assigned a private iteration
space. Quantified equations can be expanded by copying the equation for each
instance I E I, e.g. (Iii: 0 < i ~ 2:: xli] = F(... ,y[i - IJ, ...)) results in
x[l] = F(... , y[Oj, ...) II x[2j = F(... ,y[lj, ...) after expansion.

The iteration spaces assigned to each quantified equation are linearly bounded
lattices.

After expansion, any instance x[J], J E zn of any indexed variable x appears
at most once on the left hand side of an equation (single-assignment property)
and there exists a partial ordering of the equations such that any instance of
any variable appearing on the right hand side of an equation appears on the
left hand side earlier in the partial ordering (computability).

A piecewise linear algorithm can be written in form of a program which consists
of a set of quantified equations as follows:

· .. 11 (III: I E I .. x[PI + fj = F(... ,y[QI - dj, ...)} II ...

where P, Q and f, d are integer indexing matrices and vectors of appropriate di
mensions, and F is an arbitrary function.

EXAMPLE 5. A simple example of a piecewise linear algorithm with just one quan
tification is the algorithm of a finite impulse reponse (FIR) digital filter:

www.manaraa.com

124

FIR
in.

((II j: 0 5; j < N:: a(j]), (II i: 0 5; i < T:: uri]})
always
-(-II i,j: 15; j < NAN -15; i < T:: Y[i,j] =

y[i,j - 1] + a(j]u[i - j]) II
(II i: 0 5; i:: y[i, 0] = a[O]u[i])

Wl1
(II i: N - 1 5; i < T:: y[i, N - I])

L. TIIIELE

For the first quantification in the always section we have P = (~ ~), Qy =

(~ ~), Qa = (0 I), Qb = (1 -I), f = (0 O)t, da = du = 0 and dy = (0 l)t.

Another piecewise linear algorithm is that given in Example 1. The always section
of 'mavec1' can be equivalently written as

(II i,j : 1 5; i 5; n :: c[i, 1] = 0) II
(II i,j : 1 5; i 5; n A 25; j 5; n :: c[i,j] = c[i,j - 1] + a[i,j]b(j])

Using the fact that the cutset of linearly bounded lattices is again a linearly
bounded lattice it can be shown, that the following property holds:

PROPERTY 2. Any module
- which is correct according to our notation,
- whose index spaces and condition spaces are linearly bounded lattices,
- whose indexing functions are all affine, and
- which satisfies the computability and single assignment properties after ex-
pansion

can be interpreted as a piecewise linear algorithm.

Programs that satisfy these properties are called piecewise linear programs. We will
show later, that this property also holds for a hierarchical set of modules, see also
Examples 1 and 2. In the design of piecewise linear processor arrays, to a given
program arbitrary transformations can be applied which preserve the I/O behavior
and which lead to piecewise linear programs. Some useful program transformations
will be explained in Section 5.

The dependency structure of a piecewise linear algorithm can be represented
by a dependence graph which can be constructed as follows:

1. The given program must be expanded such that a set of equations is obtained.
2. To each instance of an indexed variable there is associated a vertex of the

dependence graph.
3. If an indexed variable xlI] directly depends on an indexed variable y[J], then

there is an edge from the vertex associated to y[J] to that associated to xlI].

www.manaraa.com

COMPILER TECHNIQUES FOR MASSIVE PARAlLEL ARCHITECTURES 125

b[2]

inpro mavec2

Fig. 8. Dependence graph corresponding to modules inpro and mavec2

Very often, we will also give a geometrical representation of a dependence graph.
In particular, this is possible if all variables have the same number of index dimen
sions. A vertex corresponding to a variable x[I] for some instance of I is placed
at the index point I. The dependence graph represents a partial ordering of the
functions and therefore, represents the degree of parallelism available in the algo
rithm.

EXAMPLE 6. The geometrical representation of the dependence graph correspond
ing to the module 'inpro' in Example 2 is shown in Fig.B. The same figure also
contains the dependence graph corresponding to the module 'mavec2' of Example
2 for n = 2.

Now, the class of piecewise regular algorithms can be defined, see e.g. [16, 6].
The only difference to the class of piecewise linear algorithms is the fact, that all
indexing functions in the always section are constant. Consequently, the matrices
P and Q which have been used for the definition of piecewise linear algorithms are
unity matrices. Therefore, all variables in the algorithm are of the form x[j(I)]
where I is the index vector and the indexing function f(I) = 1+ d where d is some
constant integer vector of appropriate dimension. A piecewise regular algorithm
can be represented as a program of the following form:

· .• 11(111: lEI:: x[I+f]=:F(··.,y[I-d],···))II···

The following property can be shown to hold:

PROPERTY 3. Any module
which is correct according to our notation,
whose index spaces and condition spaces are linearly bounded lattices,
whose indexing functions are all constant, and
which satisfies the computability and single assignment properties after ex

pansion
can be interpreted as a piecewise regular algorithm.

www.manaraa.com

126 1.. THIELE

Programs with these properties are called piecewise regular.
The following example gives a piecewise regular program for the FIR filter

algorithm.

EXAMPLE 7. Again, the algorithm for an FIR filter is used. After some program
transformations the piecewise linear algorithm given in the previous example can
be converted into the following piecewise regular algorithm:

PRFlR
in

(II j : ° $ i < N :: a'[O,j]), (II i: ° $ i < T:: u'[i,O]})
always
--{I-I i,j: ° $ i < N 1\ i $ i < T::

y[i,i] = a[i,j]u[i,j] if j = °

out

'" y[i,j - 1] + a[i,j]u[i,j] if i ~ 111
a[i,i] = ali - l,i] if i ~ 1

a'[i,i] if i = 0 1\
u[i,i] = u[i - l,j - 1] if i ~ 1

'" u'[i,i] if i = 0

{II i: N - 1 $ i < T:: Y[i, N - I]}

The program 'inpro' in Example 2 is piecewise regular also, as there are only con
stant index dependencies, see F~g.8.

The importance of the class of piecewise regular algorithms is based on the follow
ing properties:

If the iteration spaces corresponding to the equations are equal for all quan
tifications, then the class of regular iterative algorithms as defined by Rao [9] is
obtained. Based on this notation, regular processor arrays can be synthezied.
On the other hand, the class of piecewise regular algorithms leads to proces
sor architectures which are still local. They consist of interconnected regular
subsystems.
The given specifications are often not completely regular. Consequently, they
cannot be represented by a regular iterative algorithm. If they can be parti
tioned into regular sub algorithms, e.g. a sequence of loop constructs or pro
grams with subroutine calls then a piecewise regular specification is possible.
If the final specification of the architecture includes I/O of data, boundary
processors and special control processors, a regular design methodology is not
approporiate.
Properties 1 and 3 indicate, that the class is closed under certain program
transformations. In particular, partitioning, localization and control genera
tion can be carried out without the necessity to extend the proposed algorithm
models.

www.manaraa.com

COMPILER TECHNIQUES FOR MASSIVE PARAU.EL ARCHlTEC11JRES 127

t~--t-subarray P3

~~
subarray P1

Fig. 9. Decomposition of a. processor in suba.rrays a.nd processing elements

5.2.4. Piecewise linear/regular processor arrays

Given a piecewise linear program as described in Property 2 or a piecewise regular
program according to Property 3, the structure of a processor that executes this
specification has not yet been described.

There are many possible interpretation schemes for the defined program classes.
These schemes depend on the particular architecture specification, e.g. hierarchi
cal vs. flat representation, local control vs. global control, FIFO vs. LIFO stacks,
available predefined subsystems and the chosen interconnection structure. There
fore, the following scheme may be understood as an example only. The hierarchical
specification of processor arrays is described for a special class of piecewise linear
programs. A specialization to constant index functions can simply be carried out.

The interpretation is based on the assumption, that the given program has been
transformed beforehand using program transformations which are described in the
next section. This form can be described as follows:

The program consists of a set of modules. As there are no recursive module
definitions, a. partial ordering of modules can be derived (hierarchy), e.g. the
function defined by the module on the top level is not used by any other
module.
The always section of ea.ch module consists of a set of quantifications of the
form

(lip: p E PI :: S1(P]) 11 .. ·11 (II p: p E Pv :: Sv(P])
Each quantification specifies a subarray of the processor corresponding to the
module. The spaces Pi are called processor spaces, p is a called processor
index. Processing elements associated to each term Si(Pj exist at all processor
indices pEP i. It is possible that several processing elements are overlaid at
one processor index, see Fig.9.
Each term Si(Pj denotes a set of equations of the form

C{(Pjll C;(Pjll .. ·11 Civi(Pj
These equations are interpreted as the components of a processing element
corresponding to Si(Pj, see Fig.lO. To reduce the notational complexity, let us
consider the components of one processing element S[P] only. The components

www.manaraa.com

128 L THIELE

{:lrOlceS:Sing element 8 j[p]

Fig. 10. Decomposition of a. processing element in components

are the actual computing devices. Obviously, there is a vast number of possible
program schemes and interpretations for these components.
For example, a processing element may be composed of components like

(lit: tETdp]:: x[p,t+s] ==.rl(".,y[P-'Ul,t-Td, ...))!I

(II t: t E T2[P]:: x[p, t + s] == .r2("" y[p- 1£2, t - T2], ...)) II .. ·
Here, Tj and 8 are scalars, Tj[P] are called sequencing spaces which may depend
on the processor index p, t is called sequencing index and Ui are integer vectors
of appropriate dimension. Of course, components defining other variables may
be also part of a processing element. Obviously, the functions .ri correspond
to purely stateless (combinatorial) circuits with a single output.
According to Fig.ll a processing element S[P] can be realized as follows: For
any i there is a unidirectional link from the processing element at location
p - 'Ui whose output is y[p - 1£" t]. The link contains a synchronous FIFO (first
in / first out) register oflength Ti. There is a FIFO oflength s at the output
x of the processing element. The different equations defining the variable x
are implemented using multiplexers. At first it is computed which condition
t E Ti[P] is true. The output x of the processing element is assigned to that
of component i.
It can be seen that different processing elements exist due to different proces
sor spaces. The computation of iteration dependent conditionals of the form
t E Ti[P] can be avoided and computed outside the processor array by control
generation (see [17]). Control generation removes condition spaces by locally
propagating control signals from the border of the array to each processing ele
ment. These control variables are connected to the (de)multiplexers in Fig.ll.
In that case, a processing element does neither need to count the sequencing
index, nor its processor index must be stored. The conditionals t E Ti(P] may,
however, also be computed inside the processing elements (see Fig.ll). As
linear operations on processor and sequencing indices have to be carried out,
comparators, adders and modulo counters realize these conditionals.
Of course, a processing element may also contain components which realize
a function applied to a tupel of quantified variables. Let us suppose that the
components have the form

www.manaraa.com

COMPILER TECHNIQUES FOR MASSIVE PARAU.EL ARCHITECTURES

component
functions

X[p, t]
MULTIPLEXER I-+H-I-I----

· • ·
decision units

Fig. 11. Part of a processing element with stateless modules

(II t: t E T 1 [P]:: (II q: q E Ql[P]:: X[p,q,t+S])) =
F1(···,(llt: tET'l[P]:: (1Iq: qEQ\[P]:: y(p-Ul,q,t-rl])),···)11

(lit: tETz[P]:: (lIq: qEQ2[P]:: x(p,q,t+s])) =

129

F 2(···,(llt: tET'z(P]:: (1Iq: qEQ'z(P]:: y(P-u2,q,t- r2])),···)II···
The interpretation is similar to that given in the previous case, see Fig.12.
The main difference can be seen in the fact that bundles of signals are pro
cessed and the component functions may have internal states. The above given
components define values of x[P, q, t] for all q E Q = Uti) Qj. In a similar way,
bundles of signals are inputs to the components F1,F2 , ••••

It may be possible also that the functions define several quantified variables.
In this case, the interpretation scheme can be extended easily. Note that the
components F1 ,F2, ... may be defined by other modules. Moreover, similar
remarks than at the end of the previous item concerning the interpretation
of simple combinatorial components apply: there are many different ways to
physically realize the multiplexers and decision circuits.
Finally, Fig.13 describes the whole hierarchical structure of the proposed for
mal architectural description.

:.rote that there are also other possible interpretation schemes for piecewise
linear/regular programs: For example, computing the equations and the iteration
dependent conditionals may be realized in software if the processor array con
sists of programmable processing elements (e.g. multiprocessors). Also intermedi
ate hardware/software interpretations of piecewise regular program schemes can
be thought of. In the design system COMPAR (see [56,43]), the processor array

www.manaraa.com

130

decision units

MULTIPLEXER .~~

•••

•••

""-' x[P.q. tl s
qE Q

Fig. 12. Part of a. processing element with modules

L. THIELE

can be specified by an OCCAM program.

EXAMPLE 8. The piecewise regular program for FIR-filtering in Example 7 is
given. Let p = j be the processor indez and let t = i be the sequencing indez.
Moreover, let us suppose that during the design a hierarchical structure has been
generated. The following program may have been obtained:

PROFIR

«(II p: O:S p < N:: a/[O,pj),(1I t: O:S t < T:: u'[t,O]))
always
-(-II p: p = 0:: (II t: O:S t < T ::

y[t,pj = a[t,pju[t,p] II

out

))

a[t,p] = art - l,p] if t > 0
""' a'[t,p] if t=OII

u[t,pj = u'[t,p]

(II p: ° < p < N ::
«(lit: O:St<T:: y[t,p)},{lIt: O::;t<T:: u[t,p])) =

PE«(II t: 0:S t < T:: y[t,p-lj),
(II t: t = 0:: a'[t,p]), (II t: O:S t < T:: u[t,p - 1]))

(II t: N - 1 :S t < T:: y[t, N - 1))

www.manaraa.com

COMPILER TECHNIQUES FOR MASSIVE PARALLEL ARCHITEC11JRES

MODULE

subarraysl
processing elements

components

MODULE

t
" JJ o
G)
JJ » s:

1
Fig. 13. Hierarchical composition of modules and its interpretation

PE
in

({lit: O~t<T:: y/[t]),{llt: t=O:: a/[t]),
(II t: 0 ~ t < T:: u/[t]))

always
-{-II t: 0 ~ t < T ::

out

y[t] = yl[t] + a[t]ul[t] II
art] = art - 1] if t > 0

'" a/[t] if t = 0 II
u[t] = u/[t]

({lit: O~t<T:: y[tl},{lIt: O~t<T:: u[t]))

131

The processor consists of IV processing elements of two kinds. The first processor
space PI is given by p = 0, the second processor space P 2 is given by 0 < p < N.
The corresponding subarrays contain the processing elements Sl[P] and S2[Pj. The
interpretation as a signal flow graph is given in Fig.1l,. The example is used
to demonstrate the above hardware interpretation scheme with no concern about
efficiency. For example, the multiplexers may be omitted by using static registers
to store the local variables. Moreover, pipelining could have been introduced using
an affine transformation of the iteration indices .

.5.3. PROGRAM TRANSFORMATIONS AND DESIGN FLOW

Until now, we have described an equational program notation a.nd its interpreta
tion as an algorithm (behavior) a.nd as a processor architecture (structure). The

www.manaraa.com

132 L. TIlIELE

a'[O,O] a'[O,1] a'[O,2] a'[O,N-1] a,[O,p]

u'[t.O]'o--.l-l--hr-+C u[t,p]

y[t,N-1] y[t,p]

processor PROFIR
a'[O,p]

u[t,p-1] u[t,p]

y(t,p-1] y[t,p]
1.--===--...)

processing element S2[P]

processing element S 1 [pI

a'[t]

u '[t]O---II-+--I--+---oO u[t]

y'[t] y[t]

Fig. 14. Processor corresponding to the modules PRO FIR and PE

program which specifies the structure must obey the given architectural specifica
tions, e.g. the number of hierarchical levels, predefined (already realized) modules,
size a.nd dimension of processor spaces, timing constraints, synchronous vs. asyn
chronous realization, local control scheme, local data interconnection a.nd many
others.

One possibility to obtain a program which is computationally equivalent to the
given one is to apply program transformations. These transformations must be
able to solve the design problems mentioned in Section 4.1. The definitions and
properties of linearly bounded lattices and piecewise linear/regular algorithms lead
to a transformative approach with the following properties:

The tools make use of basic program transformations which are provably
correct, i.e. the input/output behavior is preserved.
The class of piecewise linear programs is closed under the basic transforma
tions. Therefore, the program can be processed further after any of the design
transformations.

Because of space limitations it is not possible to describe all available tools and ba
sic transformations. Moreover, many results have been published elsewhere, There
fore, the main purpose of this Section is to give some of the basic transformations
and to more informally describe the tools.

5.3.1. Basic Transformations

Only the basic transformations are applied directly to a program. All other tools
can perform program transformations only by calling these basic routines. As not
all basic transformations can be explained in detail, we restrict ourselves to 'output

www.manaraa.com

COMPILER TECHNIQUES FOR MASSIVE PARALLEL ARCHITECTIJRES 133

normal form', 'unidirectional propagation', 'variable splitting' and 'piecewise affine
transformation'. The implementation of these transformations necessitates access
to a library of mathematical routines, which includes operations on lattices (change
of basis, intersection, union), operations on polyhedra (linear programming, convex
hull, integer linear programming, projection), integer linear algebra (change of
basis, unimodular transformations, Hermite and Smith Normal form) and exact
rational arithmetic, see e.g. Fig.5.

Output Normal Form: Here, the index function of a variable is transformed onto
a normalized form. Therefore, the geometrical representation of the dependence
graph is not changed. In particular, let us suppose a quantification of the form

quant = (II I: I E I:: x[PI + I] = F(... , y[QI - d], ...)}

The ouput normalized form is obtained as

OutputNormalForm(quant,x) =
(II I: I E I':: xlI] = F(... ,y[Q'I - d'], ...))

where I' is an affine transformed index space, i.e. I' = 1(1) with /(1) = PI + /.
Moreover, Q' satisfies Q' P = Q and d' = Q' / + d.

This transformation can be used to achieve a normalized input for other tools
like localization, control generation or partitioning. There are many other trans
formations which just restructure the given program without actually changing
the dependence graph, e.g. splitting of quantifications or removing and creating
condition spaces.

EXAMPLE 9. As an example we consider

quant = (II i: 1 ~ i ~ n:: x[2i - 3] = y[5i + 6])

With P = 2, f = -3, Q = 5, d = 6 we obtain

OutputN ormalForm(quant, x) =
(II i: i = 2~ - 3 1\ 1 ~ K. ~ n:: xli] = y[~i + 2n)

Unidirectional Propagation: The conversion of piecewise linear into piecewise
regular programs is based on this program transformation. The main purpose is
to replace linear index functions by constant index functions. In particular, let us
suppose that the quantified equation

quant = (II I: I E I:: xlI] = y[QI - d])

is given where I E ZS and Q E QSxs. Moreover it is required that rank(Q) = s - l.
As a result, we obtain

www.manaraa.com

134

Y
®
®
®

-
®
®
®

it /1
Y

it

) oXo 0
0 0 0 -) 0 0 0

-- ~r--

j

UniProp(quant)

Fig. 15. Dependence gra.ph representing a.n unidirectional propa.ga.tion

UniProp(quant) = {III: I E I':: xii] = y[I - d] if IE 11
"" xii - u] if IE 12
"" xii + u] if IE 13

1.. THIELE

In order to determine the parameters, we decompose the matrix E - Q, where E
denotes the unity matrix, according to E - Q = u{3t where u E Z" with coprime
elements a.nd {3 E Q3. Then the spaces 11 = {I: {3t I = O}, 12 = {I: {3t I > O},
13 == {f: {3tI < O} a.nd I' == ConvexHull(IU{J: J = Qf A f E I}) are obtained.

EXAMPLE 10. As an example

quant = (II i,i: i ="1 A i = 2"2 11.0:5 "1,"2 < 4::
x[i,i] = y[i - t, -3D

is considered. Using Q == (~ -~2), d == (~), ut == (1 2) and {3t = (0 1/2)

we obtain

UniProp(quant) ==
(II i,j: i ="1 A j = 2"2 A 0:5"2 < 4 A "2 - 4 < "1 < 4::

x[i,i] = y[i,j-3] if i=O
"" x[i-1,j+2] if j>O
"" x[i+1,j-2] if j<O)

The corresponding dependence graphs are shown in Fig.iS.

Variable Splitting: Let us suppose that a given program defines an indexed
variable, say x, on a certain index space, say I. It is often required to rename this
variable in different portions of the index space, say Xl in J and X2 in K. There
are two main applications of variable splitting:

www.manaraa.com

COMPILER TECHNIQUES FOR MASSIVE PARAU..EL ARCHITECTURES 135

In certain algorithms, e.g. algorithms for matrix inversion, SVD, algebraic
path problem, the data dependencies are not regular. In order to determine
feasible scheduling functions it is necessary to schedule different parts of the
inde..><: space differently. Therefore, variables must be renamed.
If additional hierarchical levels are created, then it is useful to make variables
local to the new 'sub'-modules. To this end, these variables must not be used
in any other part of the program. This property can be achieved by variable
splitting.

In particular, let us assume that

quant = (II I: lEI:: xli] = S[I]) II
(III: IEJ:: y[I]=F(... ,x(f(1)], ...)}

where x is defined by the first quantification in 'quant' only and the second quan
tification in 'quant' represents all quantifications in the module which use the
variable x. f(1) denotes an index function. Then

V ariableSplit(quant, Icut. x) =
(111: I E In leut :: xIiI] = SrI]) II
(II I: I E In leut:: x2[I] = SrI]) II
(II I: 1 E J:: y[I] = F(... , X 1 (f(1)], ...) if IE 11

'" F(... , X2(f(1)], ...) if I E 12)

Here, leut denotes the halfplane defining the index space of Xl> i.e. leut = {l :
aI ~ b} and leut = {I: aI < b} for some vector a and some scalar b. In
order to guarantee input-ouput equivalence, we have 11 = {I: af(1) ~ b} and
12 = {l: af(1) < b}.

EXAMPLE 11. Let us assume that

quant = (II i,j: 0::; i,j < N:: x[i,j] = z[i,j]) II
(/li,j: O::;i,j<N:: y[i,jj=x[i+j,i-jj)

and leut = {i,j: i -j ~ a}. Then we obtain (see Fig.16)

VariableSplit(quant, leut. x) =
(II i,j: 0::; i < N t\ i ::; j < N:: xl[i,j] = z[i,jj) II
(II i,j: 0::; i < N t\ 0::; j < i:: x2[i,j] = z[i,j]) II
(II i,j: 0::; i,j < N:: y[i,j] = X1[i + j, i - j] if

'" xz[i + j, i - j] if

. > 0 J _

j < O)

Piecewise Affine Transformation: The affine transformation of index spaces is
one of the most important basic transformations. The geometrical representation
of the program's dependence graph is changed. This transformation has been used
in many different context, e.g.

www.manaraa.com

136 L. TIiIELE

Fig. 16. Dependence graph representing variable splitting

Parallelization of loop programs (loop skewing, do-accross, cycle shrinking,
linear schedule).
Synthesis of systolic arrays by affine transformations.
Retiming transformations in synchronous and asynchronous circuits and pro
cessor arrays.

In general, the affine transformation of index spaces can be applied to each variable
in a module separately without leaving the class of piecewise linear programs. Let
us use the simple quantifications

quant = (II I: I E I :: x(J(I)] = S[I]) II
(III: IEJ:: y[I]=F(... ,x[g(I)], ...)}

where x is defined by the first quantification in 'quant' only and the second quan
tification in 'quant' represents all quantifications in the module which use the
variable x. S[I] denotes an expression and f(I), g(I) denote index functions. Then
with the affine transformation h(I) = AI + I we obtain

AffineMap(quant,h,x) = (II I: I E I:: x[h(f(I))] = S[I]} II
(II I: IE J:: y[I] = F(... ,x[h(g(I))], ...)}

Obviously, the variable x[J] has been replaced by x[h(J)]. Therefore, the location
of a certain value x[J] in the geometrical representation of the dependence graph
has been moved from J to h(J). In order to guarantee I/O equivalence, h(J) must
be one-to-one for all index points J where x is defined.

If the transformation matrix A is identical for all variables of a module, the
transformation used by Rao [9] for designing systolic arrays is obtained. Then
the class of regular iterative algorithms is mapped onto itself. Condition which
guarantee this property for general affine transformations are given in [6].

After an affine transformation, often a transformation to the output normal
form is applied. The new indices may then be interpreted as processor index p and
sequencing index t, i.e. Jf = (pt t). Certain restrictions on the affine transforma
tions guarantee the causality of the resulting processor array.

www.manaraa.com

COMPILER TECHNIQUES FOR MASSIVE PARAllEL ARCHITECTURES

X1 Y

.... x2

-
Fig. 17. Dependence graph representing piecewise affine transformations

EXAMPLE 12. Let us start with the quantified equations

quant=(lIi,j: O~i,j<N::
xl[i,j] = y[i - l,j] a y[i,j + 1] if i = j + 1

xl[i-l,j]OXl[i,j+l] if i>j+l
x2[i,j] = y[i + l,j] a y[i,j - 1] if i = j-l

x2[i+l,j]ox2[i,j-l] if i<j+l)

137

This partitioning of variables may have been obtained by variable splitting, see
Fig.17. It can be seen, that a linear schedule of the program given above can not be

obtained. We choose a piecewise affine transformation using hI (1) = (~ ~) I for

transforming Xl and h2(I) = I for X2. After transforming the resulting quantifica
tion onto output normal form and renaming the variables according to It = (p t)
a quantification is obtained which can be interpreted as a processor as follows

(lip, t: 0 ~ p < NAp ~ t < N ::

5.3.2. Tools

XI(P, t] = y[p, t - 1] ° y(P + 1, t] if p = t - 1
xI[p,t-l]oXI[p+l,t] if p<t-l

X2[p, t] = y[p + 1, t] ° y[p, t - 1] if P = t - 1
x2[p+l,t]ox2[p,t-l] if p<t-l)

This last section is devoted to some of the tools shown in Fig.5. In particular,
the basic problems of localization, control generation, processing of hierarchy and
partitioning are introduced and the corresponding procedures are briefly described.

Localization and Control Generation: The localization of algorithms and the
generation of control signals for the synchronization of parallel computations are
part of the whole design trajectory. We will summarize the main results only.
For further information and a complete list of references, the interested reader is
referred to [17, 33, 34].

www.manaraa.com

138 L. TI:lIELE

The localization of algorithms converts piecewise linear programs into piecewise
regular programs. Main applications of the localization are the distribution of con
trol signals and the distribution of data to the locations requiring them. Moreover,
the class of piecewise linear programs is considerably more general than that of
piecewise regular programs.

The localization can also be considered as a routing problem in the index space.
The following problems can be solved explicitly, see also [31, 32]:

Perform an asymptotically optimal localization with respect to the number
and the total lengths of interconnections between processing elements.
Consider a given set of data dependence vectors or interconnection directions.
Solve localization problems which are due to an unbounded number of equa
tions requiring a certain value (unbounded out-degree) or due to an un
bounded distance between the index point, where a variable is defined and
the index point where the variable is used. Moreover, even global commu
tative and associative operations (like summation, multiplication, min, max)
can be transformed into sequences of simple operations mechanically, see [33].
The localization can be applied to the modules of a program independently.

The localization is based on the above given 'unidirectional propagation'. Obvi
ously, this basic transformation is able to convert a quantification of the form

(II I: I E I:: x[PI] = y[QI])

into a quantification with constant index functions, if rank(P - Q) = 1. The
general case of an affine index function with rank{P - Q) > 1 can be obtained by
a suitable decomposition of P - Q into a summation of outer vector products.

The purpose of control generation is to replace completely or partly the iteration
dependent conditionals. This is achieved as follows:

Additional control variables are defined which determine the actual functions
that must be evaluated within the processing elements. Iteration dependent
conditionals are replaced by conditionals which involve the introduced control
variables.
The definition of these variables at all index points and the definition of ini
tial values are included in the given program in form of a set of quantified
equations.
As these quantified equations have constant index functions, the control sig
nals are propagated through the final processor array.
The resulting program can be processed further as it is in the class of piecewise
regular programs.

Following the structural interpretation of a program proposed in Section 5.2.4,
iteration dependent conditionals are implemented by decision units whose inputs
necessitate the internal state of a processing element. In general, these decision
units must be capable of e.g. addition, multiplication, counting and comparison
in order to decide whether t E Ti. The control generation replaces iteration de
pendent conditionals by conditionals which depend on control variables. Now, the

www.manaraa.com

COMPILER TECHNIQUES FOR MASSIVE PARALLEL ARCHITECTURES 139

_control signals

control by state machine stateless local control

Fig. 18. Stateless local control mechanism

decision units evaluate combinatorial functions of the control variables, see Fig.18.
Hence, the control generation leads to a completely stateless control mechanism
and the processing elements are independent of the size of the problem to be solved.
The main purpose of the control generation is to simplify the design process. For
example, it is possible to apply the control generation to all condition spaces and
to all modules. As a result, a completely regular program (e.g. one that represents
a regular iterative algorithm) is obtained which can be processed further more
easily.

Creation and Flattening of Hierarchy: There are several reasons to process
hierarchy in the design of massive parallel architectures:

Usually, the behavior of the required architecture is described by a hierarchical
program. The partitioning of the program in hierarchical levels has been done
in the algorithm design step of the design trajectory, see Fig.I. But for the
processor specification, usually a different hiera.rchical partitioning is required
as the architecture specification must be taken into account. Therefore, the
creation of new hierarchical levels or the flattening of a given structure are
important design steps.
Hierarchy enables a decomposition of the whole design problem into simpler
subproblems. Details of the design or the specifica.tion which are not neces
sary at the current stage can be hidden and tools can be applied to several
hierarchical levels independently.
One of the most important design transformations, i.e. partitioning or hard
ware matching, can be considered as a hierarchical operation.

It is of great importance that tools which create and flatten hierarchy fit into
the design methodology, i.e. they must relate piecewise linear programs and they
must be provably correct. In the following, only an informal introduction is given,
for a more complete treatment, see [57].

At first, the creation of hierarchical levels is described. The purpose of this tool
is to include a set of equations into a new module. After the creation of the new
module, these equations are hidden from the original module point of view. In the

www.manaraa.com

140 L. TIlIELE

following, the module which uses the function defined by the new module is the
'calling' or 'main' module whereas the newly created module is the 'called' module
or 'sub'-module.

The procedure for creating additional hierarchical levels is based on the inter
pretation of index directions as hierarchical levels. It is described for a simple input
program only. More complicated cases can be handled in a similar way.

1. At first the basic transformations 'variable splitting', 'affine transformation'
and 'normal form computation' are applied. This step enables the inclusion of
a desired set of equations in the new module.

2. Let us assume that the equations defined by the quantification

(II I: I E I:: x[/(I)] = .1'(... , y[h(I)], ...)}
shall be included in the new module. To this end, the index space I is decom-

posed according to I = (k) into (II J: J E J:: (II J(: J(E K:: ...)).

Consequently, the above given quantification can be written as
(II J : J E J:: (II J(: J(E K ::

x[h(J), h(]()] = .1'(.•• , y[hl(J), hz(]()], ...)))
It can be seen that the index functions /(1) and h(I) have also been decom
posed into components which depend on J only and those which depend on](
only. This restriction on the class of quantified equations which can be included
in a new module simplifies the following discussions.

3. The above quantified equation of the given module can now be replaced by
(IIJ: JEJ:: ((11](:](EK:: x[h(J),h(]()])) =

sub(... , (II J(:](E K :: y[hl(J), hz(]()]), ...))
which yields the calling module. Moreover, the newly created called module
which defines the function 'sub' has the form

sub
in

(... , (11](:](E K:: y'[hz(]()]), ...)
always

out
(II J(:](E K:: x'[h(]()j}

If h(]() or h2(]() are not one-to-one for J(E K, then it is possible to restrict
the quantifications to the corresponding unique subsets. This is due to the fact
that it is not necessary to transfer the same value more than once to the new
module and vica versa.

Some aspects of the mechanism will be explained using the next example.

EXAMPLE 13. The example explains the above described procedure using a pro
gram for multiplying two matrices. Note that all index spaces are oj the form
1 ~ i, j, k ::; n. They are not included in the program text.

www.manaraa.com

COMPILER TECHNIQUES FOR MASSIVE PARALLEL ARCHITECTURES

matl

(II i,j:: a[i,j]) , (II i,j:: b[i,j]})
always
-(-lIi,j,k:: e[i,j,k]=e[i,j,k-1]+a[i,k]b[k,j] if k> 1

'" a[i,k]b[k,j] if k = 1)
out

(II i,j:: e[i,j, n])

141

Now, a new level for the inner product calculation is introduced. Obviously, the
variables c[i, j, k] can be made local to the module 'inpro '. This can be achieved by
replacing c[i, j, n] by a new variable, e.g. eli, j], using variable splitting.

mat2

(II i,j:: a[i,j]) , (II i,j:: b[i,j]})
always
-(-II i,j,k:: e[i,j] = c[i,j,k) if k = n II

out

c[i,j,k] = c[i,j,k-1]+a[i,k]b[k,j] if k> 1
'" ali, k)b[k,j] if k = 1)

(II i,j:: e[i,j])

Now, the above described decomposition of the index space according to (II i,j,k ::
...) = (II i,j:: (II k:: ...)} leads to the final result

mat3

(II i,j:: a[i,j]), (II i,j:: b[i,j]})
always
-(-II i,j:: e[i,j) = inpro(11 k:: a[i,k]},(11 k:: b[k,j]})}
out

(II i,j:: e[i,j])

sub

(II k:: a'[k]), (II k:: b'[k]))
always
-(-II k:: c' = e[k] if k = n

c'

e[kJ = e[k - 1J + a'[kJb'[kJ if k> 1
'" a'[k]b'[k) if k = 1)

www.manaraa.com

142 L.nnELE

Now, flattening of hierarchical levels is described. This transformation is the
inverse of the above defined operation. Therefore, a module which defines a func
tion that is used by other 'calling' modules can be removed from the program by
including its equations into these calling modules. Again, the process of flattening
hierarchical levels is explained by means of a. simple ca.se only_

1. The main concept of the proposed procedure is ba.sed on the fact that all
variable na.mes used within the called module must be different from those
used in calling modules before the equa.tions can be included. In particular, if
the called module is used in several equations of several calling modules, copies
of the called module with disjoint varia.ble names must be generated.

2. The a.bove described uniqueness of variables must also be guaranteed for quan
tified uses of the called module. This can be a.chieved a.s follows: if a module is
used for all J E J C Z' then to all variables in the called module, s a.dditional
index dimensions are added. This transforma.tion must be applied to variables
in the 'in' and 'out' sections of the called module also. The extensions of the
index spaces can be interpreted a.s an embedding of the variables in the index
spaces of the calling modules.

3. Finally, the equa.tions of the called module are included in the calling modules.
Additional quantified equations consider the former interface between calling
and called modules.

Therefore, if module which defines the function 'sub' is used by a calling module
a.ccording to

{IIJ: JEJ:: ({III(: J(EKl:: x[f(J,I()]}) =
sub(... , (II I(: I(E K 2 :: y[g(J, I()]), ...)}

a.nd the called module 'sub' ha.s the form

sub
in

{II](: I(E K2 :: yl[gl(I()J)
always

out
{II](: J(E Kl :: xl[!,(I()]}

then the following quantified equations must be included in the calling module if
the ca.lled module 'sub' is removed from the program:

{II J: J E J ::
always section of 'sub' with embedded variables II
(II J(: J(E Kl :: x[f(J,K)] = x'(J,!,(K)]} II
(II J(: J(E K2 :: y'(J,g'(K)]::; y[g(J, J()J)}

Again, this procedure is explained by an example.

www.manaraa.com

COMPILER TECHNIQUES FOR MASSIVE PARAllEL ARCHITEClURES 143

function function
application evaluation

r.!a~*"~p~

flatten .. .
create

Fig. 19. Example of flatten and create hierarchy

EXAMPLE 14. The hierarchy of the modules 'mat3' and 'inpro' defined in the pre
vious example will be flattened. According to the procedure sketched above, variables
in the called module 'inpro' must be made unique. As ai, bl ,el and e are not used
in the module 'matS', no new names must be introduced. Now, these variables are
embedded in the index space of the calling module 'mat3' by replacing a'[kj, b/[k],
e' and e[kJ with a'[i,j, k], b'[i,j, kj, e/[i,j] and e[i,j, kJ, respectively. The resulting
equations can be included into the calling module 'matS' which yields

mat4
in

((II i,j:: a[i,j]) , (II i,j:: b[i,j]))
always
-(-II i,j:: e[i,j] = c'[i,jjll

out

(II k:: al[i,j,kj = a[i,k] II b'[i,j,kJ = b[k,jlll
c'[i,j] = elk, i,j] if k = n II

e[i,j,kj = e[i,j,k-1j+a'[i,j,kjb'[i,j,k] if k>1
'" a'[i,j, k]b'[i,j, k] if k = 1)}

(II i,j:: e[i,j])

After a simple substitution of variables, the original program 'mat1' is obtained
again. Fig.19 serves to explain the process of flattening and creating hierarchy.

Partitioning: Partitioning or hardware matching is a complex program trans
formation which enables the design of fixed size architectures. Usually, the archi
tecture specification not only prescribes the number of available processing ele
ments but also the dimension of the interconnection structure, see Fig.20. An
overview of existing techniques is given in [58J. The procedures proposed up to
date are based on the partitioning of the algorithm's iteration space into congru
ent tiles. Subsequently, these tiles are mapped on a processor a.rray of fixed size.

www.manaraa.com

144

full size processor array

clustering
~

L. THIELE

fixed size processor arrays

Fig. 20. Hardware Matching

This approach is due to the fact that the partitioning of a given processor array
obviously is equivalent to a partitioning the program's index space. Jainandunsing
[24] classifies different partitioning methods into LSGP (locally sequential, globally
parallel) and LPGS (locally parallel, globally sequential) schemes. In case of the
LSGP-clustering scheme, operations inside a tile are sequentialized and operations
of distinct tiles are executed in parallel on an array of fixed size. In case of the
LPGS-clustering scheme, operations of different tiles are executed sequentially on
an array of fixed size, whereas operations inside a. tile are executed by different
processing elements in parallel. In [58], this classification is generalized by the in
troduction of the partitioning schemes of active clustering and passive clustering:
whereas active clustering is concerned with the problem of a limited number of
processing elements, passive clustering serves to increase the efficiency of a pro
cessor array. Moreover, multiprojection is a partitioning scheme for the reduction
of the dimension of a processor array. In [21], a systematic way of deriving linear
processor arrays is given. The problem of partitioning has also found theoretical
interest in the domain of 'compilers for supercomputers'. In e.g. [23, 20, 28, 53],
similar partitioning and multiprojection schemes are proposed for loop-programs.

The proposed piecewise linear design methodology enables a homogeneous and
complete solution to the partitioning problem, see [29]. The approach can be sum
marized as follows:

Instead of providing a large set of possible transformations for solving differ
ent problems, e.g., for realizing different partitioning schemes, only one new
program transformation is introduced.
This program transformation partitions the index space of the given program
into the direct sum of lattices. The created tiles are embedded in new dimen
sions of the index space of a so created intermediate program.

www.manaraa.com

COMPILER TECHNIQUES FOR MASSIVE PARALLEL ARCHITECTURES

I =

000
000000

000000
000

J

145

K

Fig. ::n. Example of tiling an iteration space I a.ccording to 1= J EEl K for an iteration space of
dimension 2

After tiling, either an additional level of hierarchy can be introduced (which
may be interpreted as a processing element) or an affine transformation is ap
plied directly to the intermediate program. As a result, the dimension of the
iteration space is reduced by scheduling the tiles and the operations inside
a tile. Different choices of coordinate directions which are associated to the
processor space and the sequencing space enable the generalization and con
sideration of known partitioning schemes like muitiprojection, LSGP-, LPGS-,
active- and passive clustering.
The control of processor functions, the control of external memory access, the
switching functions for data and control paths and the ordering of input and
output data to and from the host are specified by the resulting partitioned
program.

Let us shortly describe the main steps involved in the partitioning of piecewise
regular programs, see [29]:

First, the s-dimensional iteration space of the given piecewise regular program
is partitioned into congruent tiles J (see Fig.21). To this end, a tiling matrix
P is chosen which determines the cuts through the index space I.
The dimension of the iteration space is increased such that at most s dimen
sions are associated to each tile J and at most s dimensions are associated to
the repetition of tiles described by K. In terms of the index vector I E ZS, a

new index vector j = (~) is generated. Hence, all variables are embedded

in an at most 2s-dimensional iteration space. As the relations between the
variables of the given program must be preserved, additional quantifications
are added that define 'terminals' between the operations on the subspaces J
and K.

An example for the partitioning of a simple two-dimensional index space (e.g. that
of the modules 'mavec' or 'PRFIR' defined in the examples of Section 5.2) is given
in Fig.22.

www.manaraa.com

146

_i

tiling

I

-i
embedding

L. THIELE

create hierarchy

scheduling
assignment

Fig. 22. Exa.mple of tiling and embedding an iteration space

The next step in the partitioning may be either the creation of a new hierarchical
level or the scheduling and assignment of operations using a multi projection, i.e. an
affine transformation. In any case, the choice of coordinate directions generates all
mentioned clustering and partitioning schemes homogeneously. For example, if in
Fig.22 the directions i and j are assigned to a new module (or if they are scheduled
sequentially and k is assigned to the processor index), then the LSGP-clustering
scheme is obtained.

It has been shown, that the above given procedure to the hardware matching
problem leads to a piecewise linear or piecewise regular program which can be
processed further, see e.g. [29].

As a result of the whole section we can conclude that program transformations
like partitioning, localization, control generation and piecewise affine scheduling fit
into the piecewise linear design methodology. The class of piecewise linear programs
is closed under these complex operations.

Acknowledgements

This research was partially supported by the 'Deutsche Forschungsgemeinschaft',
project B5/SFB124 and by the Siemens AG. Moreover, the author is grateful to
many interesting discussions on the subject of this paper with Ed Deprettere.
The author would like to recognize the members of his group for suggestions and
comments, especially J. Teich and U. Arzt.

References

[1] F. Catthoor, "~1icrocoded processor architectures and synthesis methodologies for real-time
signal processing - a tutorial," in Algorithms and Parallel VLSI-Architectures, Volume A
(E. F. Deprettere and A.-J. van der Veen, eds.), pp. 403-430, Amsterdam: Elsevier, 1991.

www.manaraa.com

COMPILER TECHNIQUES FOR MASSIVE PARALLEL ARCHITECTURES 147

[2] H. Kung and C. Leiserson. "Systolic arrays for VLSI," in SIAM Sparse Matrix Proceedings,
(Philadelphia), pp. 245-282, 1978.

[3] S. Y. Kung, VLSI Processor Arrays. Englewood Cliffs.: Prentice Hall, 1987.
[4] C. Guerra and R. Melhem, "Synthesizing non-uniform systolic designs," in [EEE Int. Con/.

Parallel Processing, pp. 765-771, 1986.
[5] G. Yiei, W. Liu, R. Cavin, and F. Lin, "Synthesizing irregular iterative algorithms with array

architectures," VLSI Signal Processing reds. R. W. Brodersen et a1.), vol. 3, pp. 447-458,1988.
[6] L. Thiele, "On the design of piecewise regular processor arrays," in Proc. IEEE Symp. on

Circuits and Systems, (Portland), pp. 2239-2242, 1989.
[7] 1. Thiele, "On the hierarchical design of VLSI processor arrays," in IEEE Symp. on Circuits

and Systems, (Helsinki), pp. 2517-2520, 1988.
[8] D. 1. Moldovan, "On the design of algorithms for VLSI systolic arrays," Proceedings of the

IEEE, pp. 113-120, 1983.
[9] S. K. Rao, Regular iterative algorithms and their implementations on processor arrays. PhD

thesis, Stanford University, 1985.
[10] H. Leverge, C. Mauras, and P. Quinton, "A language oriented approach to the design of

systolic chips," in Algorithms and Parallel VLSI-Architectures, Volume A (E. F. Deprettere
and A.-J. van der Veen, eds.), pp. 309-328, Amsterdam: Elsevier, 1991.

[11] U. Arzt and L. Thiele, "Hardware description with VLSI-Occam," in Proc. IFIP 10th Inter
national Computer Hardware Description Languages, (Marseille), April 1991.

[12] C. Lengauer, M. Barnett, and D. Hudson, "Towards systolizing compilation," Distributed
Computing, vol. 5, pp. 7-24, 1991.

[13] K. Chandy and J. Misra, Parallel Program Design. Reading, Mass.: Addison-Wesley Pub!.
Comp., 1988.

[14] J. Snepscheut and J. Swenker, "On the design of some systolic algorithms," Journal of the
.4. CM, pp. 826-840, 1989.

[15] J. A. Yang and Y. Choo, "Parallel program transformations using a metalanguage," in Proc.
A CM Can/. on Priciples of Programming Languages, pp. 11-20, 1991.

[16] 1. Thiele, "On the optimization of regular wavefront arrays," in IEEE Can/. on Acoust.,
Speech, and Signal Processing, (New York), pp. 2029-2032, 1988.

[17] J. Teich and L. Thiele, "Control generation in the design of processor arrays," Int. Journal
on VLSJ and Signal Processing, vol. 3, no. 2, pp. 77-92, 1991.

[18] A. D. Lange, A. V. D. Hoeven, P. Dewilde, and E. Deprettere, "HIFI: An object oriented
system for the high level specification, analysis and synthesis of VLSI networks," in Formal
VLSI Specification and Synthesis (1. Cla.esen, ed.), pp. 321-340, Amsterdam: North Holland,
1990.

[19] Y. Wong and J. Delosme, "Optimal systolic implementation of n-dimensional recurrences,"
in Proc. [EEE Int. Conf. Computer Design, pp. 618-621, 1985.

[20] P. Lee and Z. Kedem, "Synthesizing linear array algorithms from nested for loop algorithms,"
IEEE Trans. on Computers, vol. 37, December 1988.

[21] U. Schwiegelshohn and L. Thiele, "Linear processor arrays for ma.trix computations," J. on
Parallel and Distributed Computing, vol. 7, pp. 28-39, 1989.

[22] J. Xue and C. Lengauer, "On one-dimensional systolic arrays," in Proc. ACAf Int. Workshop
rI Formal Methods in VLSI Design, (Springer Verlag), 1991.

[23] F. Irigoin and R. Triolet, "Supernode partitioning," in Proc. SIGPLAN, (San Diego), pp. 319-
329, Jan. 1988.

[24] K. J ainandunsing, "Optimal partitioning scheme for wavefront/systolic a.rray processors," in
Proc. IEEE Symp on Circuits and Systems, 1986.

[25] D. l. Moldovan and R. A. B. Fortes, "Partitioning and mapping of algorithms into fixed size
systolic arrays," IEEE Trans. Computers, vol. C-35, pp. 1-12, 1986.

[26] J. Bu a.nd E. Deprettere, "Processor clustering for the design of optimal fixed-size systolic
arrays," in .4.lgOl·jthms and Parallel VLSI-Architectures, Volume A (E. F. Deprettere and
A.-J. van der Veen, eds.), pp. 341-362, Amsterdam: Elsevier, 1991.

[27] J. Ramanujam and P. Sadayappan, "Tiling of iteration spaces for multicomputers," in Int.
Can/. on Parallel Processing, pp. II/179-II/186, 1990.

www.manaraa.com

148 L TIlIELE

[28J J.-P. Sheu and T.-H. Tai, "Partitioning and Mapping Nested Loops on Multiprocessor Sys
tems," IEEE Transactions on Parallel and Distributed Systems, vol. 2, pp. 430-439, 1991.

[29J J. Teich and L. Thiele, "Partitioning of processor arrays: A piecewise regular approach,"
INTEGRATION: The VLSI Journal, 1992.

[30J S. Rajopa.dhye, "Synthesizing systolic arrays with control signals from recurrence equations,"
Distributed Computing, vol. 3, pp. 88-105, 1989.

[31J Y. Wong and J. M. Delosme, "Broa.dcast removal in systolic algorithms," in Proc. 01 Int'l
Coni. on Systolic Arrays, (San Diego), pp. 403-412, May 1988.

[32J V. V. Dongen and P. Quinton, "U niforrnization of linear recurrence equations: A step toward
the automatic synthesis of systolic arrays," in Proc. Int'l Coni. Systolic Arrays, (San Diego),
pp. 403-412, 1988.

[33J V. Roychowdhury, L. Thiele, S. K. Rao, and T. Kailath, "On the localization of algorithms for
VLSI processor arrays," in: VLSI Signal Processing III, IEEE Preu, New York, pp. 459-470,
1989.

[34J 1. Thiele and V. Roychowdhury, "Systematic design of local processor arrays for numerical
algorithms," in: Parallel Algorithms and VLSI Architectures: Volume A (E. Deprettere Ed.),
North Holland Publishers, pp. 329-339, 1990.

[35J H. Ribas, "Obtaining dependence vectors for nested loop programs," in Proc. Int. Conference
on Parallel Processing, pp. II/212-II/219, 1990.

[36J J. Bu, L. Thiele, and E. Deprettere, "Systolic array implementation of nested loop programs,"
in Application Specific Array Process on, Princeton, (IEEE Computer Society Press), pp. 31-
43, Sept. 1990.

[37J P. Frison, P. Gachet, and P. Quinton, "Designing systolic arrays with diastol," in VLSI
SIGNAL PROCESSING II, pp. 93-105, IEEE Press, New York, 1986.

[38J P. Gachet, B. Joinnault, and P. Quinton, "Synthesizing systolic arrays using DIASTOL," in
Systolic Arrays (W. Moore, A. McCabe, and R. Urquart, eds.), pp. 25-36, Hilger, 1987.

[39J J. Jean and S. Kung, "A VLSI array compiler (VACS) for array design," in Proc. Int. Con/.
on VLSI and Signal Processing, VLSI Signal Processing III, IEEE Computer Society Press,
(Monterey), p. 1988, 495-508.

[40] B. Engstrom and P. Ca.pello, "The SDEF systolic programming system," in Concurrent
Computations (S. Tewksbury, B. Dickinson, and S. Schwarz, eds.), p. cha.pter 15, Plenum
Press, 1987.

[41 J D. Moldovan, "ADVIS: a software package for the design of systolic arrays," in IEEE Con/.
Computer Design, pp. 158-164, 1984.

[42J V. V. Dongen and M. Petit, "PRESAGE: a tool for the parallelization of nested lopp pro
grams," in Formal VLSI Specification and Synthesis, volume 1 (L. Claesen, ed.), pp. 341-360,
Amsterdam: North Holland, 1990.

[43J U. Arzt, J. Teich, and L. Thiele, "The concepts of COMPAR: A compiler for massive parallel
architectures," in Proc. International Symposium on Circuits and Systems (ISCAS), (San
Diego), May 1992.

[44J .J. Annevelink and P. Dewilde, "HIFI: A functional design system for VLSI processing arrays,"
in Proc. Int '/ Con/. on Systolic Arrays, (San Diego), pp. 413-452, 1988.

[45] M. V. Swaaij, J. Rossel, F. Catthoor, and H. D. Man, "Synthesis of ASIC regular arrays for
real-time image processing systems," in Algorithms and Parallel VLSI-Architectures, Volume
B (E. F. Deprettere and A.-J. van der Veen, eds.), pp. 329-341, Amsterdam: Elsevier, 1991.

[46J J. Bu and E. F. Deprettere, "A design methodology for fixed-size systolic a.rrays," Proceedings
Conference on Application Specific Array Processors, vol. ASAP90, pp. 591,602, 1990.

[47] R. Kuhn, "Transforming algorithms for single-stage and VLSI a.rchitectures," Workshop In
terconnection Networks for Parallel and Distributed Processing, 1980.

[48J P. Quinton, "Automatic synthesis of systolic arrays from uniform recurrent equations," in The
IEEEjACM ll-th Annual Int'l Symp. on Computer Architecture, (Ann Arbor, MI, USA),
pp. 208-214, 1984.

[49J W. L. Miranker and A. Winkler, "Space-time representation of computational structures,"
Computing, pp. 93-114, 1984.

:50J P. Capello and Ie Steiglitz, "Unifying VLSI array design with linear transformations of

www.manaraa.com

COMPILER TECHNIQUES FOR MASSIVE PARAU.EL ARCHITECTURES 149

space-time," in Advances in Computing Research, vol. 2, pp. 23-65, 1984.
[51] S. K. Rao ud T. Kalla.th, "Regular itera.tive a.lgorithms ud their implementa.tions on pro

cessor arra.ys," Proceedings of the IEEE, vol. 6, pp. 259-282, March 1988.
[52] R. M. Karp, R. E. Miller, ud S. Winogra.d, "The orga.niza.tion of computa.tions for uniform

recurrence equa.tions," J. ACM, vol. 14, pp. 563-590, 1967.
[53] M. Wolfe a.nd M.S.La.m, "A Loop Trusforma.tion Theory ud u Algorithm to Maximize

Pa.ra.llelism," IEEE Transactions on Parallel and Distributed Systems, vol. 2, pp. 452-471,
1991.

[54] M. Wolfe, "Massive para.llelism through program restructuring," in Proc. IEEE Conf. on
Frontiers of Massively Parallel Computation, pp. 407-415, 1990.

[55] L. Thiele, "Computa.tional arra.ys for Jacobi a.lgorithms," in SVD and Signal Processing,
pp. 369-383, North Hollud Pub., 1988.

[56] J. Teich ud L. Thiele, "Uniform design of para.llel programs for DSP," in Proc. IEEE Int.
Symp. Circuits and Systems, (Singa.pore), pp. 344a.-347a., June 1991.

[57] U. Arzt, J. Teich, ud L. Thiele, "Hierarchical concepts in the design of processor a.rra.ys,"
in Proc. CompEuro 199~, (The Hague), May 1992.

[58] J. Bu, Systematic design of regular VLSI processor arrays. PhD thesis, Delft University of
Technology, Delft, The Netherla.nds, 1990.

[59] G. Nemhauser a.nd L. Wolsey, Integer and combinatorial optimization. New York: John Wiley
ud Sons, 1988.

Appendix

This appendix contains methods to determine the solution of integer linear equa
tions, see e.g. [59]. At first, we need some definitions and notations:

DEFINITION 2. An integer matrix U E z",xa is unimodular iff I det UI = 1.

It directly follows, that the inverse of a unimodular matrix is an integer matrix.
In the next definition, the expression alb denotes a divides b.

DEFINITION 3. Any matrix A E Z",xl has a decomposition of the form

where U E zsxs and V E Zlxl are unimodular. Moreover, D = diag(c51 , ••• ,c5r) E

zrx r with c51 1621 •.• Ic5r . (~ ~) is called Smith Normal Form of A.

Now, the set of integer solutions to a set of linear equations, i.e.

x E {x: Ax = b 1\ x E Zl}

can be determined, see e.g. [59J. To this end, we compute the Smith Normal Form
of A as

www.manaraa.com

ISO L. TIlIELE

Using the decompositions U- l = (g}) and V-l = (Vl-V 2-) we obta.in the

following result:
If U:; b '" 0 then Ax = b has no solution.
If D- l U1b is not integral, then Ax = b has no integral solution.
Otherwise, all integer solutions of Ax = b are obta.ined using

x E {x: x = (V1- V2-) (D-~lb) A ~ E Zl-r}

For computational purposes it may be advantageous to use the Hermite Normal
Form instead of the Smith Nomal Form.

www.manaraa.com

PROGRAMMABLE CELLULAR NEURAL NETWORKS

A STATE-OF-THE-ART

TAMAs ROSKA
Dual and Neural Computing Systems Research Laboratory

Computer and Automation Institute, Hungarian Academy of Sciences (MTA SzTAKI)
Kende-u. 13/17, Budapest, H-ll11, Hungary

Abstract. Analog processor arrays placed on a 3D regular grid interacting within a finite neigh
borhood: this is the CNN (cellular neural network) paradigm. Using other words: it is a pro
grammable prototype machine performing nonlinear dynamic spatial convolutions in real time.
The first silicon chips show enormous computing power: in the order of tera XPS (analog opera
tions per second). In this paper the state of the art of this rapidly emerging field of computing
is exposed emphasizing the programmability aspects. After describing the general framework,
qualitative results are summarized. The application capabilities are shown in three selected ar
eas: motion detection, retina models, a.nd la.yout error detection. The hardware realizations are
reviewed and a dual programmable CNN chip architecture is shown (combining a.nalog arra.y dy
na.mics with logic). Finally, the CNN program design, i.e. a.nalog template design methods, are
summarized and the main features of a. CNN workstation is ptesented.

1. Introduction

The 3-dimensional regular, analog, nonlinear, dynamic, locally connected proces
sor array, called cellular neural network (CNN), has been invented in 1988 in
Berkeley. In an unprecedented speed this paradigm has been spread out world
wide: in two years almost hundred researchers made significant contributions most
of them published in the Proceedings of the (first) IEEE Workshop on Cellular
Neural Networks and their Applications CNNA-90 [19]. It can be considered as
the 3D analog alternative of the 2D cellular logic automaton invented by John von
Neumann.

The CNN is composed of identical, relatively simple, analog, nonlinear dynamic
units (processing units, PU), these units are placed on a regular 3D geometric
grid (several 2D layers), and the analog interactions between the units are local
(within a finite neighborhood, a 3D window). The interactions between the units
are represented by simple interconnections, although, they may be nonlinear and
delay-type as well. Here, the term "neural" is just characterizing the few types of
uniform units and the large number of interactions.

The CNN paradigm
is a simple and powerful model for spatial dynamics in 3 dimensions
represented by a set of dynamic spatial convolution equations on a finite
spatial grid, thus,
it is the most general deterministic representation of spatia-temporal phe
nomena (described by nonlinear and delay-type partial differential equations);
moreover,

151

P. Dewilde and J. Vandewalle (eds.), Computer Systems and Software Engineering. 151-167.
1Cl1992 Kluwer Academic Publishers.

www.manaraa.com

152 T.ROSKA

the processing units (PUs) are in a one-to-one correspondence with the ge
ometry (topology) of a sensory array (the processor indices are coordinates in
the space, not just serial numbers)i
at the same time the CNN is a prototype programmable machine, the wealth
of different problems can be solved using the same machine, and
due to the local inter connectivity the VLSI realizations are dense, standard,
and have unprecedented high speed (the first tested chips have a capability of
0.3 tera XPS per chip using a conservative technology with a simple multi-chip
module possibility), and optical realizations are also in experimental phase
capable of processing feed-forward templates with the speed of light.

Extending the CNN paradigm with local (global) logic (without any AID or
D I A converters!) the so called dual CNN is combining the strength of array dy
namics and logic.

Starting results indicate that, using simple processing units only, the rich dy
namics could yield very complex, yet useful, effects. Array oscillators, chaos gen
erators, time varying interconnections are just a few of the many possibilities.

The fact that CNN processors are, at the same time, geometric objects pro
vides natural representations of a lot of sensory array signals (tactile and visual
perception, radiation, etc.).

CNN has extremely broad application potentials and wide spread impact in
various scientific disciplines. Modelling complex mechanical, chemical, electromag
netic, geophysical and biological phenomena, e.g. stress analysis, corrosion pat
terns, transport dynamics, visual pathway models, pollution dynamics are just a
few of the many disciplines and problems.

Programmability is a key property of the CNN paradigm. The representation
of complex dynamics of thousands of interacting processing units with just a few
"geometric" numbers of the cloning template is the basis of programmability.

To build a new generation of array processing computers with several orders
of magnitude higher speed than present day supercomputers, this is a reasonable
challenge to the CNN world.

Several starting results, case studies and projects on various fields already justify
this broad scope of applications. Testing complex pattern errors in manufactur
ing processes, analysis of thermographic images, image processing including high
speed motion analysis and camouflaged motion detection, robot control with op
tical signals, new models of important phenomena in the visual pathway are just
a few of the many on-going projects world-wide.

In this paper the state of the art of this rapidly emerging field of computing is
exposed by highlighting some key areas. After describing the general framework in
Section 2, the programmability issue is considered in Section 3. Qualitative results
are summarized in Section 4 (range of dynamics and stability). Section 5 shows
application capabilities in three selected areas: motion detection, retina models,
and layout error detection. In Section 6 the hardware realizations are reviewed
and a dual CNN chip architecture is shown (combining analog ·array dynamics

www.manaraa.com

PROGRAMMABLE CELLULAR NEURAL NETWORKS IS3

with local logic). Finally, the CNN "program design" i.e. analog template design
methods are summarized and the architecture of a CNN workstation is presented
in Section 7. Although, we tried to refer all major works in the areas selected, we
are not claiming that the present list of references are complete.

2. The General Framework

The CNN is a locally connected, analog, dynamic, nonlinear processing array [I].
The processing elements are on a 2D grid (one layer) which can be multiplicated
to have a multilayer CNN. One processing element (a simple cell) with nonlinear
template elements [2] can be seen in Figure 1. Various grids are shown in Figure 2.
The dynamics of the array can be described by the canonical equations
(assuming ez = 1, Rz = 1, Ry = 1)

Vri;(t)=-Vzij(t)+ L Ai;;kl(vllkl,vlli;)+ L Bij;kl(Vukl,Vui;) + Ii;
kleN.(i;) kleN.(i;)

(in many cases Ii; = 1)

where ij denotes a grid point associated with a cell on the 2D grid, kl is the grid
point in the neighborhood of the ij cell and N r (ij) is the neighborhood of ij with a
radius of T. Ai;;kl(Vllkl, Vllij) and Ei;;kl(Vukl. Vui;) are the feedback and feedforward
interconnection weights or template elements (atoms) uniquely defining the CNN
array.

Delay template elements [2] add two additional terms:

L Ai;;kl· Vllkl(t - r) + L Elj;kl • Vukl(t - r)
kleN.(ij) kleN.(ij)

In case of single variable, linear, space invariant templates the simple spatial con
volution terms are

L A(ijjkl).vYkl(t)+ L B(ijjkl).Vukl(t)
klENr(ij) klENr(ij)

and the simple cloning template contains the (T + 1) * (T + 1) real matrices A and
B as well as the constant term I. In case of the nearest neighborhood (T = 1) these
19 numbers determine the task (the program) of the CNN array (see the details
in [1] and [2]).

In case of array processing applications input signal arrays (e.g. grey-scile
images) Sl(ij), S2(ij) can be placed onto the CNN as

Sl(ij) = Vuij and S2(ij) = Vzij(O)

and the output signal array So(ij) is associated with Vllij. The "program" is the
cloning template. Normally, it is supposed that Vuij and Vllij are $ 1 in absolute
values.

www.manaraa.com

154 T.ROSKA

C

Ixy(ij;kl)

Iyx = f(Vxij)

f(v)

K

v

-K

f(v) = ~ (\v + K\-\v - KI)

Fig. 1. The cell of a cellula.r neura.! network (nonlinear templa.tes)

In very important applications these signal arrays are images and the CNN is
used for solving complex image processing tasks. The CNN can be considered as
a fully parallel real-time array processor with input signal arrays Sl and S2 and
output signal array So. The computing time is the transient time or a finite time
before the settling. This dynamics can be placed into a system setting too [3).

Hence the CNN has two independent input signal arrays. Continuous input,
state, and output signal values (e.g. gray scale images) are represented by values
[-1,1); (e.g. -1 is white, +1 is black and gray-scales are in between). If Iij is not
a constant it could mean a third independent input array.

Under some well defined conditions, the CNN with a single capacitor per cell
and memoryless nonlinearity as well as with delays form the simplest form of a
broad universe of capabilities [1-6]. An interesting second order cell CNN is the
membrain-like one [5]. While the former can be interpreted as a kind of diffusion

www.manaraa.com

PROGRAMMABLE CELLULAR NEURAL NETWORKS ISS

Fig. 2. Various cell-grids

equation the latter can be considered a wave equation for certain templates. Dis
cretizing the state equation in time, numerical solutions of the dynamics of CNN
can be calculated. In the same way, digital hardware accelerator boards can be
designed.

3. Programmability

Exploiting the full capability of CNN the 2 (or 3) independent input possibilities
can not be over~mphasized. The generic input S1 can be time varying (continuous
and discrete-time), the initial state S2 can be changed in sampled mode only. The
third input array is, in fact, a part of the cloning template: the constant term I. IT
it is not space invariant then, due to its cell-local nature, it can be used as another
independent input array denoted by Sr. Its role in "spatial programming" will be
discussed next.

The key of the programmability is the cloning template atom, or in circuit terms,
the transconductance i.e. the voltage controlled current source (VCCS). It has the
same role as the simple gate in digital systems. Hence, programming is based on
this element. The cloning template is the elementary program ("instruction") of

www.manaraa.com

156 T.ROSKA

the CNN and this can be determined by giving its parameters, i.e. specific values
and/or characteristics of the template elements (a.toms). All these atoms can be
realized by transconductances (VCCS) in case of analog VLSI implementation.

If the cell-local constant current term I (off-set current or threshold current)
of the cloning template is space variant then we have an additional input array
mentioned above. This array, which could be time varying as well, could have a role
of a program. It is a spatial progmm. This, possibly time varying, spatial program
could playa role of a reference map or a prescribed route etc. Since the dynamics
of the CNN is very much depending on the value of this term (off-set current in
VLSI circuits) it has a sensitive programming effect.

The non cell-local (lateml) part of the cloning templates can be programmed
by changing their atoms (normally their values are space invariant). The central
(cell-local) atoms (elements) of the A and B template matrices are fixed values in
many applications.

The change of the cloning templates (in their template atoms) can be controlled
continuously or within preselected discrete values. Before changing the cloning
templates the CNN transient should be settled down. Since in many realizations
the change of the template values can be performed much faster than the CNN
array settling time, time varying templates can be realized as well.

Now, we have a very simple prototype programmable CNN machine. Beside the
inputs and outputs, three basic notions are important:

signal arrays Si,
cloning templates TEMi (the programmable "instructions"), and
analog "subroutines" SUBi, i.e. the parallel(P) and/or cascade(C) sequences
of the templates. In case of parallel connections the cell-local operations on
the parallel outputs are to be defined.

This way, CNN algorithms can uniquely and simply be defined [46]. Hence,
algorithms like

VU:=Slj VX:=S2j S3:=TEM2(VU,VX);
SUB2=C(TEMl,TEM2)j S4:=SUB2(S3,O);

can be defined and executed.
In case of digital circuits two qualitative properties are needed for programma

bility:
a prescribed range of dynamics and
finite settling time (guaranteed sta.bility).

In the next section these two properties are considered.

4. Range of Dynamics and Stability

4.1. RANGE OF DYNAMICS

The range of dynamics is defined as the maximum absolute value of the state
variables, At 2': IVxij(t)l.

www.manaraa.com

PROGRAMMABLE CELLULAR NEURAL NETWORKS 157

In [1) it has been shown that M is the sum of the absolute values of all the
cloning template elements plus 1. In [2) it has been proved that similar condition is
valid in case of nonlinear templates. Finally, in [14) the same condition was proved
for delay-type templates as well.

Hence, given the allowable range of dynamics for a given technology, i.e. 5 or
15 Volts in a given CMOS VLSI design, then the allowable range of the cloning
templates can be derived. Within this range the programmable CNN machine will
calculate correct results (if it is stable).

4.2. STABILITY

Complete stability means that the CNN dynamics converges to a stable constant
value for any input and initial state values. In the original paper [1) and in [16] the
feedback (lateral) template symmetry has been defined as a sufficient condition,
i.e. A(ij;kl) = A(kl;ij), kl = I = ij. The positive cell-linking condition has been
introduced in [11) as a sufficient condition which does not require the symmetry
but the nonnegativity of the lateral feedback· template elements (and the cell
linking property assures a kind of connectivity). In case of an important class of
opposite-sign templates [11) not only some stability conditions were shown [1230)
but chaotic behaviour was also found [12b). The positive cell linking property was
extended by stability preserving equivalent transformations [13) and the opposite
sign template stability region has been extended as well [17). Delay type template
stability was considered first in [2) and extensive results were proved in [14) showing
a set of simple conditions under which the delay is not disturbing the stability (e.g.
for positive cell-linking templates). On the other hand, in [15) not only another
important type of stability result has been found for delay-type templates in terms
of also the delay value but an unstable symmetric delay-type template was found.
The possibility of having multiple equilibria in CNN has been studied as well [18).
In the above stability results key mathematical theorems of [8-10) were used in
many cases.

Thus, for a quite large class of templates stability can be assured, hence pro
grammability within this class is allowed. It should be noted, however, that for
some useful templates being "experimentally stable" no stability proof exists yet.

5. Selected Application Areas

To show the wide variety of problems solved by the same CNN prototype mac.hine,
three completely different application areas are described below.

5.1. MOTION DETECTION

The first motion detection results with CNN [2330) has been related to a famous
experiment of Hubel and Wiesel. The problem is how to detect moving objects with
a given speed and given direction. Next, following [23a and b) we will illustrate the

www.manaraa.com

158 T.ROSKA

results solving this kind of problems. The following cloning template is capable of
detecting those and only those objects which have horizontal speed of one pixel
per unit time. The consequtive images are applied in sampled mode. The present
and last snapshots (S2 and St) are placed onto the initial state and input of the
cells, respectively, the detected image is the cell output signal array So. In fact,
originally we have designed three consecutive templates performing set difference,
speed detection, and direction detection. In this case it was possible to lump these
three templates into a. single template:

A = 1.0 2.1 -2.0 , B = 2.0 -8.0 [
0.0 0.5 0.0] [-0.5 0.5

0.0 , 1=-11, 0.0]

0.0 0.5 0.0 -0.5 0.5 0.0

Vuij = S1, V:r:ij(O) = S2, Vyij(00) = So

Using this CNN, those objects moving horizontally with the specified speed will
be seen on the output only, otherwise the output screen will be blank (white).

In the continuous mode of motion detection the continuously changing signal
array Set) is placed onto the generic inputs of the cells, and the "present" vs.
"next" sampling is made by a delay.

The continuously moving image Set) is placed on the CNN as Vuij' A template
solving this problem is as follows:

A = [~~~],
000

[
0 0 0]

Ar = 000,
000

[
0.25 0.25 0.25]

B = 0.25 2.00 0.25 ,
0.25 0.25 0.25

[
-0.25 -0.25 -0.25]

B'r = -0.25 -2.00 -0.25 ,
-0.25 -0.25 -0.25

1=-4.75,

T 2: 10.

Another template solving the same problem (direction independent motion detec
tion in continuous mode) is as follows:

A = [
0 0 0] 010 ,
000

B = [~~ ~], 1= -2,
000

[
0.68 0.68 0.68]

AT = 0.68 0.68 0.68 ,
0.68 0.68 0.68

[0 0 0]
BT = 000,

o 0 0
T 2: 10.

Let us realize tha.t structurally different templates can solve the same problem.
Sample input a.nd output images are shown in Figure 3. Object B is moving

faster, hence, it is disappearing.

www.manaraa.com

PROGRAMMABLE CELLULAR NEURAL NETWORKS

1234567 8 9 0 1 234 5 6 7 8 9
2
3
4
5
6
7
8
9
o
1

Object A Object B

12345 678 9 0 1 2 345 6 7 8 9
2
3
4
5
6
7
8
9
o
1

123 4 5 678 9 0 1 234 5 6 789
2
3
4
5
6
7
8
9
o
1

1234567 8 9 0 1 2 3 4 5 6 7 8 9
2
3
4
5
6
7
8
9
o
1

1234567 8 9 0 1 2 3 4 5 6 7 8 9
2
3
4
5
6
7
8
9
o
1

...
1234567 890 1 234 5 6 7 8 9
2
3
4

~ lIP
8
9
o
1

159

Fig. 3. Speed detection. Input snapshots (left) and output snapshots (right). The object moving
with higher speed is disappea.ring in the output.

5.2. RETINA MODELS

The retina is one of the most understood part of living information processing
systems. The success of the simple resistive grid model of the "silicon retina" [27]
attracted deserved attention. As the resistive grid is a CNN with a special simple
template, it was quite natural that more complex CNN templates were searched
for finding more realistic retina models. Figure 4 shows a cross section of a CNN
model. The 2D CNN array is supposed to be placed horizontally while the input to
output parts are placed in the vertical direction. Thus the cell-local interactions
(feedback or feedforward) are in the vertical direction, and the lateral interactions
are connecting different cells. In detecting any motion in the visual pathway the
structure [26] and a CNN model [29] is shown in Figure 5. The delay-type effects

www.manaraa.com

160 T.ROSKA

Fig. 4. The vertical cross section of a horizontally placed CNN layer resembling the retina structure

=- to
__.R. tl -"':"O-----...... .n.="'" to

E =- tl

Fig. 5. Directionally sensitive nerve structure and CNN model

are important in many new visual models [e.g.28].
Hence, the CNN models are natural and simple models of vision-related bio

logical systems having well-defined qualitative properties.

5.3. LAYOUT ERROR DETECTION

Detecting layout errors in manufactured printed circuit boards (PCBs) and IC
wafers are important problems ensuring production reliability. For PCB layout
problems starting results [30] are clearly prove the feasibility of a system solution.
The layout errors were reduced to the single problem of minimal line width de
tection. For rectilinear layouts the crucial detecting template for the vertical case,
found by a new template learning algorithm, is as follows:

[
-0.1 0.4 -0.1]

A = 0.4 0.0 0.4
-0.1 0.4 -0.1

[
0.2 -3.0 0.2]

B = 0.0 2.5 0.0 ,
0.2 -3.0 0.2

1= -5,

www.manaraa.com

PROGRAMMABLE CELLULAR NEURAL NETWORKS 161

• •

•
(a) (b)

Fig. 6. Layout errors in the vertical direction

In Figure 6 an input layout (a) and an output (b) detecting violation places of
a minimal wire width of 2 pixels in the vertical direction are shown.

6. Hardware Implementations

Since its invention CNN is tightly coupled with physical realization. The first
attempts were VLSI circuits although an optical realization followed soon. A recent
review [20b] is devoted entirely to this subject. The peek computing speed on
silicon is now 0.3 Tera XPS on a 1 cm2 area using a 2 micron technology (MOSIS)
[38] and the programmable design [35] shows the capability of implementing CNN
as a programmable prototype machine for performing general dynamic nonlinear
spatial convolutions.

The deep relation between functional complexity and physical realization is an
important aspect of designing modern electronic systems [31]. The VLSI imple
mentation of general analog computing arrays, especially neural networks, now
has a more or less established design technology [32]. The crucial element is the
transconductance realizing the "synaptic" weight. The first commercially available
"electronically trainable analog neural network" (ETANN) chip, the Intel 80170,
is implementing programmable transconductances.

6.1. FIXED-TEMPLATE CNN

CNN is a.n appealing architecture for physical realization: local connectivity and
regular repetitive geometric structure are both a "must" for success. Indeed, the
various designs [33-391 exploited these architectural advantages. In practical terms
it means that e.g using 10.000 transconductances for 160 inputs and 64 neurons
in the fully connected ETANN chip, more than 1000 neurons can be placed and
interconnected on the same area in a locally connected CNN chip.

After the first design [33J, the first fully tes~ed high speed chip [381 proved the
theoretical advantages. The 100 nsec time constant with 32 cells/mm2 density using
2 micron technology is an impressive result which can be improved. The discrete-

www.manaraa.com

162

l
I
N
E

lTE
WCX

NEIGHBOURING CEllS

FROM tt u. t t t TO
L' I t I I ,
I l' I I I I

AFB--v ANALOG

DFB--v DIGITAL
FEEDBACK -

Fig. 7. The schematic of a programmable dual CNN cell

T.ROSKA

lOGIC
PART R

E
A
o
l
I
N
E

time CNN chip design [39] with 1200 cells on 1 cm2 with a maximum speed of
3.3 MHz marks another important direction. The optical realization [37] provides
speed of light processing using feedforward (B) templates only, the feedback (A)
templates are implemented by electronic discrete-time feedback.

6.2. A PROGRAMMABLE "DUAL" CNN CHIP

A key advantage of CNN processing is the locality of the interconnections. Once we
transfer the signal array by wires, except for extracting the final results, we loose
this advantage. To perform CNN algorithms, as defined in Section 3, without signal
array transfers a new architecture and its VLSI implementation was introduced [34
and 35]. In this architecture, the first programmable CNN design, the sequence of
CNN templates are performed by storing the intermediate results locally. Having
this local analog storage, series and parallel connections of template sequences
can be performed. Moreover, local logic is added as well. Hence, analog dynamics
and logic operations can be combined realizing dual-type computing [7J. Unlike in
hybrid computing there are no AID or D I A converters, neither any digital (binary,
decimal or hexadecimal) coding. The only coding is spatial.

The circuit schematic of a cell of this dual CNN chip containing logic, called
CNNL [35J, is shown in Figure 7. The programmable switches provide the correct
timing of the prescribed template sequences. The local logical storage is capable
of storing sequences of intermediate results, e.g sequence of processed image snap
shots. The latter capability can conveniently be applied e.g. in achieving motion
detection CNN algorithms. In the CNNL chip [35] the template element values can
be programmed continuously and in discrete values controlled by standard logic.
Using the CNNL architecture programmable CNN algorithms can be performed.

www.manaraa.com

PROGRAMMABLE CELLULAR NEURAL NETWORKS 163

Fig. 8. The schematic of the CNN hardware accelerator CNN-HAC

6.3. A DIGITAL HARDWARE ACCELERATOR

The local connectivity of the CNN processors was exploited in the design of a
multiprocessor digital hardware accelerator CNN-HAC board [43]. In this design
the half-million CNN cells were divided into 4 vertical strips, one DSP with local
RAM storage was assigned to each strip and FIFO-s were used for communica
tion between the DSP-s calculating the discrete-time representation of the CNN
cell dynamics. The schematic architecture is shown in Figure 8. Using 4 Texas
TMS320C26 DSP-s 2 microsec/cell/iteration was achieved.

Comparing the different CNN realizations the following computing time ranges
are typical for the analog VLSI, digital hardware accelerator, and software simu
lator solutions, respectively, in the case of 1000 cell CNN-s: 0.1-1 microsec, 1-10
msec and 1-10 sec.

6.4. SOME PERSPECTIVE REALIZATIONS

Besides the optical implementations it seems reasonable that materials exhibiting
spatio-temporal properties described by partial differential equations resembling
the CNN dynamics in spatially discretized form could be used as an array com
puting device. The crucial question is the input and output. The image processing
capabilities of some chemical phenomena [41,42] are promising initiatives. Living
systems having locally connected regular geometric structures could serve as CNN
prototypes as well.

www.manaraa.com

164

7. Template Design and Development Tools

7.1. VARIOUS TEMPLATE DESIGN METHODS

T.ROSKA

Interestingly enough, quite a few useful templates were found by cut-and-try or
heuristic methods.

Analytic methods considering some simple dynamic effects can also be used (see
e.g. [40,25]). Using it with heuristics and experience a kind of personal design skill
can be acquired.

Translating cellular automaton (CA), 2D filtering, and convolution-type image
processing algorithms into CNN templates has been used as well (see e.g.in [22]).
These areas are to be explored yet.

Learning procedures were proposed first in [48,49] and later in [30]. The con
vergence, the unimodality of the cost function, and the selection of the correct
training set are crucial problems.

Different types of partial differential equations can be used in their spatially
discretized forms to generate useful CNN templates. So called reaction diffusion
equations [41] and autowave equations [42] are of special interest. The type of the
equations is as follows:

81(x, y, t)/Ot = D divgrad (9(1(x, y, t)) + F(I(x, y, t), L)

where I(x, y, t) is the spatia-temporal intensity function, 9 and F are nonlinear
functions, and D and L are constants.

Many sensory array processing biological models have the structure of CNN.
The visual pathway is a typical case. It seems that the CNN model could be a
unifying paradigm for modelling a lot of virtually different biological phenomena.

Methods combining known effects and designing CNN algorithms [46] from
simple templates is are in their starting phase, although, interesting first results
are already known (e.g. [23,25,30,40]).

7.2. A CNN WORKSTATION

For experimenting with various CNN templates a. CNN simulator [44] has been
developed and used in several Laboratories. Continuously developing it has led to
the present form of a CNN Workstation [45]. This workstation has the following
input signal a.rray capabilities:

optical scanners
video camera with frame gra.bber
interactive gra.phics
ASCII files

Three simulators are integrated into the system:
a. general purpose software simulator
a special purpose functional simulator for the dual CNNL chip
a hardware accelerator board CNN-HAC

www.manaraa.com

PROGRAMMABLE CELLULAR NEURAL NETWORKS 165

The workstation is a. hardware-software integrated package which can be installed
in any PC AT compatible computer.

Acknowledgements

This work has been supported by the research grant No. 2578/91 of the National
Research Fund of Hungary (OTKA) and a joint grant No. INT 90-01336 of the
National Science Foundation of the United States of America and the Hungarian
Academy of Sciences. The inspiring discussions with Professor Leon O. Chua are
gratefully acknowledged.

References

[La) L.O.Chua and L.Yang: 1988, 'Cellular neural networks: Theory', IEEE TraR6action, on
Circuit., and System, 35, 1257-1272

[lob] L.O.Chua. and L.Yang: 1988, 'Cellular neural networks: Applications', IEEE Tran.,actioR6
on Circuit., and SYltem., 35, 1273-1290

[2.a.] T.Roska. and L.O.Chua.: 1990, 'Cellular neural networks with nonlinear and dela.y-type tem
plate elements', Proc.IEEE CNNA-90, 12-25

[2.b] T.Roska. and L.O.Chua: 'Cellular neural networks with nonlinear and delay-type template
elements and non-uniform grids', Int.J.Circuit Theory and ApplicatioR6, to appear

[2.c] T.Roska and L.O.Chua: 1991, 'Dual CNN analog software', Dual and Neural Computing Sy.
tem., Laboratory, Computer and Automation Institute of the Hungarian Academy of Science,
(MTA SzTAKI), Budapest, Report DNS-I-1992

[3] J.A.Nossek, G.Seiler, T.R.oska. and L.O.Chua.: 1990, 'Cellular neural networks: Theory and cir
cuit design', Ind. Network Theory and Circuit De,ign, T. U.Munich, and Int.J. Circuit Theory
and Application." Report No.TUM-LNS-TR-90-7, to appear

[4] H.Harrer and J.A.Nossek: 1990, 'Time discrete cellular neural networks: architecture, applica.
tions and rea.lization', Technical Univer,ity of Munich, Report No.TUM-LNS-TR-90-12

[5] J.Henseler and P.J.Braspenning: 'Membrain: a cellular neural network model based on a vi
brating membrane', Int.J.Circuit Theory and ApplicatioRl, to a.ppear

[6] A.Radvanyi, T.Roska. and K.Halonen: 1992, 'The CNNL architecture and time-varying tem
plates', Dual and Neural Computing Sy,tem., Laboratory, Computer and Automation Inditute
of the Hungarian Academy of Science, (MTA SzTAKI), Budape6t, Report DNS-I-1992

[7] T.Roska.: 1988, 'Analog events and a dual computing structure using analog and digital cir
cuits and operators', in Di6crete Event System.: Model., and ApplicatioRl eds. P.Varaiya. and
A.B.Kurzhanski, Springer-Verlag, Berlin, pp.225-238

[8] M.W.Hirsch: 1985, 'Systems of differential equations that are competitive or coopera.tive II.:
Convergence almost everywhere', SIAM J.Math.Anal. 16,423-439

[9] M.W.Hirsch: 1989, 'Convergent a.ctivation dynamics in continuous time networks', Neural
Networks 2, 331-349

[10] H.L.Smith: 1987, 'Monotone semifiows generated by functional differential equations.',
J.DijJ.Eq 66, 120-442

[11] L.O.Chua and T.Roska.: 1990, 'Stability of a class of nonreciprocal cellular neural networks',
IEEE Transactions on Circuit., and System' 37, 1520-1527

[12.a] F.Zou and J.A.Nossek: 1990, 'Stability of cellular neural networks with opposite sign tem
plates', In.,t. Network Theory and Circuit Design, T. U. Munich ,
Report No.TUM-LNS-TR-90-15

[12.b] F.Zou an!! J.A.Nossek: 1991, 'A chaotic attra.ctor with cellular neural networks', IEEE
Trans. Circuits and Systems 38, 811-812

[13] L.O.Chua and C.W.Wu: 1991, 'The universe of sta.ble CNN templates', Memo. UCB/ERL,
April, Univenity of California at Berkeley,

www.manaraa.com

166 T.ROSKA

[14] T.Roslca., C.W.Wu, M.Ba.Isi and L.O.Chua: 1991, 'Sta.bility of dela.y-type cellular neural
networks', Memo. UCB/ERL, NOlJember, UnilJer,ityof California at Berkeley,

[IS] P.P.Civa.lleri, M.Gilli and L.Pandolfi: 1991, 'On sta.bility of cellular neural networks with
dela.y', Politecnico di Torino, Report, November

[16] G.Seiler and M.Ha.sler: 1991, 'Convergence of reciprocal cellular neura.! networks', Ind. Net
work Theory and Circuit Delign, T. U.Munich, Report No.TUM-LNS-TR-91-12

[17] M.Ba.lsi: 1991, 'Remarks on the stability and functiona.lity of CNN's with one-<iimensional
templates', Dual and Neuml Computing Sy,tem, Labomtory, Computer and Automation In
stitute of the Hungarian Academy of Science, (MTA SzTAKI), Budapest, Report DNS-5-1991

[18] L.Vandenberghe and J.Vandewa.lle: 1990, 'Finding multiple equilibrium points of cellular
neura.! networks without enumera.tion', Proc IEEE CNNA-90, 45-54

[19] 'Proceedings of the IEEE Internationa.! Workshop on Cellular Neura.! Networks and their
Applica.tions, CNNA-90', 1990, Budapelt, IEEE Ca.t.No. 90TH0312-9

[20.a.] T .Raska.: 1991, 'Cellular neura.! networks: a. state-of-the-art review', Special Se"ion on Cel
lular Neuml Network&, Proc. European Conference on Circuit Theory and Delign, ECCTD-91,
Copenha.gen, pp.1-9

[20.b] T.Roslca. and P.Szolga.y: 1991, 'A comparison of various cellular neura.! network (CNN)
realiza.tions - a. review', Proc.2nd Int. Conference on Microelectronic, for Neuml Network"
413-421

[21] T.Ma.tsumoto et a.!: 1990, 'Severa.! image processing examples by CNN',
Proc. IEEE CNNA-90, 100-111

[22] L.O.Chua and B.Shi: 1989, 'Exploiting cellular a.utomata in the design of cellula.r neura.!
networks for binary ima.ge processing', Memo.UCB/ERL M89/130, Unive,.,ity of California
at Berkeley,

[23.a} T.Roska, T.Boros, P.Thiran and L.O.Chua: 1990, 'Detecting simple motion using Cellular
Neura.! Networks', Proc. IEEE CNNA-90 , 127-138

[23.b} T.Roslca., T.Boros, A.Radvanyi, P.Thiran and L.O.Chua: 'Detecting moving and standing
objects using cellular neura.! networks',' Int.J.Circuit Theory and Application" to a.ppear

[24] V.Cima.ga.lli: 1990, 'A neura.! network architecture for detecting moving objects II.', Proc.
IEEE CNNA-90, 124-126

[25] T.Boroa, K.Lotz, A.Radvanyi and T.Roska.: 1990, 'Some useful new nonlinear and dela.y
type templates', Dual and Neuml Computing Syltem, Labomtory, Computer and Automation
Institute of the Hungarian Acodemy of Science. (MTA SzTAKI), Budapelt,
Report DNS-1-1990

[26} A.M.Sillito and P.C.Murphy, 1988, 'GABAergic processes in the central visua.! system', in
NeurotmRlmitter, and cortical function, (ed.R. W.Dyke. and P.Gloor), Plenum Fubl.Co.,
pp.167-185

[27] M.A.Mahowald and C.Mead: 1991, 'The silicon retina', Scientific American 264, NO.5,
76-82

[28] F.W6rgotter and C.Koch: 1991, 'A deta.iled model of the visua.! pathway in the cat: Com
parison of afferent excitory and intracortica.! inhibitory connection schemes for orientation
slectivity', The J. Neuro,cience 11, 1959-1979

[29] T.Roska., K.Lotz, J . Ha.m.ori, E.Ubos and J .Ta.ka.cs, et. a.!.: 1991, 'The CNN model in the visua.!
pa.thway - Part I: The CNN-Retina and some direction- and length-selective mechanisms',
Dual and Neurol Computing Sy,tem, Re,.Lab., Compo Aut. In,t., Hung.Acad.Sci.,
(MTA SzTAKI), Budapest, Report DNS-10-1991

[30] P.Szolgay and T.Kozek: 1991, 'Optical detection of layout enors of printed circuit boards
using learned CNN templates', Dual and Neurol Computing Svltem, Re,.Lab., Compo Aut.
Inst., Hung.Acad.Sci.,(MTA SzTAKI), Budapelt, Report DNS-8-1991

(31] A.Csurga.y: 1983, 'Fundamenta.!limits in large-sca.!e circuit modelling', Proc. European Con
ference on Circuit Theory and De,ign, ECCTD-83, pp.454-457, VDE-VerJag, Berlin

(32.a] C.Mead: 1989, 'Analog VLSI and neura.! systems', Addison Wesley, Reading, MA
(32.b] C.Mead and M.Ismail (eds.): 1989, 'Ana.!og VLSI implementation of neural systems', Kluwer

Academic Publ., Boston

www.manaraa.com

PROGRAMMABLE CELLULAR NEURAL NETWORKS 167

[33] L. Yang, L.O.Chua and K.R.Krieg: 1990, 'VLSI Implementation of Cellular Neural Networks',
Proc. IEEE ISCAS-90, 2425-27

[34] T.Roska.: 1991, 'Dual computing structures containing analog cellular neural networks and
digital decision units', Proc. IFIP Workshop on Silicon Architectures for Neural Nets, Nice,
North Holland, Amsterdam, pp.233-244,

(35) K.Halonen, V.Porra, T.Roska and L.O.Chua: 1990, 'VLSI Implementation of a reconfigurable
CNN containing local logic', Proc. IEEE CNNA-90, 206-215

[36] J.E.Varrientos, J.Ramirez-Angulo and E.Sanchez-Sinencio: 1990, 'Cellular neural networks
implementation: a. current-mode approach', Proc. IEEE CNNA-90, 216-225

[37] N.Friihauf and E.Liider: 1990, 'Realization of CNNa by optical para.llel processing with spatial
light valves', Proc. IEEE CNNA-90, 2S1-290

[3S) J.M.Cruz and L.O.Chua.: 1991, 'A CNN chip for connected component detection', IEEE
Trans. Circuitl and Systems 38, 812-S17

[39] H. Harrer, J .A.Nossek and R.Stelzl: 1991, 'An analog implementation of discrete-time cellular
neural networks', Ind. Network Theory and Circuit Design, T.U.Munich, Munich, Report
No.TUM-LNS-TR-91-14

[40] L.O.Chua and P.Thiran: 1991, 'An Analytic method for designing simple cellular neural
networks', IEEE Trans. Circuit., and Systems 38, 1332-1341

[41] V.I.Krinsky, V.N.Biktashev and LR.Efimov: 1991, 'Autowave principles for parallel image
processing', Physica D 49, 247-253

[42] C.B.Price, P.Wambacq and A.Osterlinck: 1990, 'Image enhancement and analysis with
reaction-diffusion paradigm', lEE Proceedings 137, Pt.I, 136-145

[43] T.Roska, G.Birtfai, P.Szolgay, T.Sziranyi, A.Radvanyi, T.Kozek, Zs. Ugray and A.Zarandy:
1990, 'A digital multiprocessor hardware accelerator board for cellular neural networks:
CNN-HAC', Int.l. Circuit Theory and Applications, to appear
(earlier version: Proc. IEEE CNNA-90, pp.160-16S)

[44] CNND simulator, Cellular Neural Network embedded in a simple Dual computing structure,
User's guide Version 3.0, (ed.T.Roska and A.Radvanyi), 1990, Computer and Automation
Institute, Hungarian Academy of Sciences (MTA SzTAKI), Budapest, Report No.37!1990

[45] A.Radvanyi and T.Roska.: 1991, 'The CNN Workstation - CNND Version 4.1', Dual and
Neural Computing Systems Res.Lab., Compo Aut. Inst., Hung. Acad. Sci., (MTA SzTAKI),
Budapest, Report DNS-12-1991

[46] T.Roska. and L.O.Chua: 1992, 'The dual CNN analog software', Dual and Neural Computing
Systems Res.Lab., Compo Aut. Ind., Hung.Acad.Sci., (MTA SzTAKI), Report DNS-2-1992

[47) Intel 80170 XA Electrically Trainable Analog Neural Network, 1990, Advance Information,
Intel Corp.

[48] F .Zou, S.Schwarz and J .A.Nossek: 1990, 'Cellular neural network design using a. learning
algorithm', Proc. IEEE CNNA-90 , 73-S1

(49] S.Schwarz and W.Mathis: 1991, 'A design algorithm for cellular neural networks', Proc.!!nd
Int.Conf. Microelectronics for Neural Networks, 53-59

www.manaraa.com

DEVELOPMENTS IN PARALLEL PROGRAMMING
LANGUAGES

R. H. Perrott

Department of Computer Science

The Queen's University

Belfast BT7 1 NN

N. Ireland

EMail: r.perrott@uk.ac.qub

Abstract. Sequential computing benefited from the fact there was one
underlying model of computation on which hardware, algorithm, and
software developments were based, namely, the von Neumann model. In
the case of parallel computing there is at the moment no single model of
computation. As a result there have been several approaches for the
development of both hardware and software. In the case of parallel
software the choice of programming language is no longer confined to a
single approach. The main division of these languages is into either
imperative or declarative languages. The declarative group can be further
divided into logic and functional languages while the imperative group
consists of procedural and object oriented languages. All these languages
offer different ways of capitalising upon the power of parallel machines.
However, to date it is not clear if anyone approach is better than any
other as not enough experience has been accumulated. This paper reviews
the state of the art in the various types of parallel programming
languages with particular reference to developments in Europe.

1. Introduction

In the case of sequential computers the architectural model, the
programming paradigms and the method of constructing algorithms all
have a single objective. In the case of parallel computers there is no
longer a single architectural model to represent parallelism but rather a
variety of different parallel architectures.

The main issue affecting the architectural model is how to organise
multiple processors to execute in parallel. One of the fIrst models was that
of an array processor - the SIMD model - where multiple processors

169

P. Dewilde and J. Vandewalle (eds.). Computer System~ and Software Engineering. 169-189.
© 1992 Kluwer Academic Publishers.

www.manaraa.com

170 R. H. PERROT

execute the same instruction but on different data; the processors operate
under the control of a single processor which broadcasts the instructions
to be executed. Array processors are particularly suited to problems
involving matrices and some impressive results have been achieved.
However, the main criticism of this model is that there is little flexibility in
the architecture for problems which could benefit from the execution of
different instructions at the same time - the MIMD model.

The earliest MIMD models were based on the shared memory concept
where all the processors are connected to the same memory. In this
scenario the processors can execute different parts of an application
concurrently, thus hopefully reducing the time to execute the complete
program. However, this model can lead to severe memory contention
problems as the processors attempt to access the same data. There is some
question as to whether this model will scale to larger orders of parallelism.

A more recent MIMD model is the distributed memory model where each
processor has its own local memory. Processors communicate by passing
messages. However, there is an overhead associated with such
communication, which in many instances can be substantial. The size of
the overhead is influenced by such factors as the distance between the two
processors wishing to communicate and the interconnection topology.
The distributed model is scaleable to greater orders of parallelism than that
currently implemented.

In the case of parallel software the choice of programming language is no
longer confined to a single approach. The main division of these
languages is into either imperative or declarative languages. The
declarative group can be further divided into logic and functional
languages while the imperative group consist of procedural and object
oriented languages (see later). All the various languages that have been
proposed offer some different way of capitalising on the power of parallel
machines. To date it is not clear if anyone approach is substantially better
than any other as enough experience has not yet been accumulated. In
many cases the concepts have not been efficiently implemented on parallel
machines. In addition there is a considerable lack of tools to assist in all
aspects of parallel programming and debugging.

The third important aspect of programming parallel systems is the choice
of algorithm. Studies have shown that transfering an efficient sequential
algorithm to a parallel machine results in an inefficient parallel algorithm.
It is now apparent that the design and construction of a new parallel
algorithm for a particular application area can produce major performance
improvements.

www.manaraa.com

DEVELOPMENTS IN PARALLEL PROGRAMMING LANGUAGES 171

Hence, in the case of parallel systems there are three important and
contributing factors, namely, the architectural model, the programming
language and the choice of algorithm. The following sections concentrate
on the programming language.

2. Approaches to parallel programming

Essentially there has been three main methods used to promote the wider
use of parallel processing, namely

(i) extend an existing sequential language with features to represent
parallelism.

The advantage of extensions is that existing software can be transferred to
the new parallel machine with relative ease. This is possible because
programmers are already trained in the base language and can introduce
the extensions gradually as they become more familiar with the situation in
which they should be used and the effect they produce. However,
experience to date has shown that extension languages have been limited
to a certain range of hardware and to machines with a small number of
processors; there is some doubt as to whether this approach can be used
on machines with a large number of processors. Problems have also been
reported in the debugging of programs written in such languages as the
interaction of the sequential and the parallel features can give rise to
difficulties in detecting errors. A more general problem is that many of
these extensions have been developed by different groups using the same
language base which has led to non standard variants of the same language
being produced making the production of a standard for such languages
difficult.

(ii) implicit - use a sequential language but rely on the compiler to
detect which parts of the program can be executed in parallel.

Most of the work in this area is based on Fortran and examines the DO
loops of the program to detennine if it is possible to spread the iterations
of the loop across different processors.

The advantage of such an approach is that existing sequential programs
can be moved relatively inexpensively and quickly to the parallel machine.
This can represent a substantial saving in development costs and is an
attractive proposition for many purchasers of a new parallel machine.
However, it is rare that the full parallelism of the program is exploited
without the help of a programmer to restructure the program; this usually
requires a reorganisation of the loops of the program so that the automatic
detection techniques will work.

www.manaraa.com

172 R. H.PERROT

In the case of the construction of new programs it is advisable that a
programmer has some knowledge of the detection techniques if as much
parallelism as possible is to be detected. This represents a diversion for a
programmer from the main task of program construction. In addition,
such an approach inhibits the development of parallel languages and
algorithms as it is confined to a sequential notation.

(iii) develop a new parallel language.

In this case a completely new parallel language is developed ignoring all
existing languages and applications. The main advantage of this approach
is that a coherent approach to parallelism is presented. The parallel
notation will enable a user to express directly the parallelism in an
application and, in addition, will assist with the development of new
parallel algorithms. However, it does mean that a user will have to rebuild
the entire software base in the new language which is a labour intensive,
expensive and perhaps an error prone exercise. All existing applications
are ignored which requires courage on the part of the management of large
installations, particularly since many new languages have not had the
property of longevity.

These three approaches have been widely used over the years, and the
following sections highlight some of the main examples.

3. Types of parallel programming languages

Since the early 1960s several proposals have been made in order to
classify machine architectures, this has resulted in a 'periodic table' of
computer architectures. It has not proved as easy to do this for
programming languages since their characteristics do not lend themselves
to easy classification. For the purposes of this article the classification
shown below is used.

www.manaraa.com

DEVELOPMENTS IN PARALLEL PROGRAMMING LANGUAGES

IMPERATIVE LANGUAGES

PROCEDURAL
ARRAY AND VECfOR PROCESSING
MULTIPROCESSING/DISTRIBUTED PROCESSING

OBJECf ORIENTED

DECLARATIVE LANGUAGES

LOGIC
FUNCTIONAUAPPLICA TIVE

3.1 IMPERATIVE LANGUAGES

173

The imperative languages have the longest history of any language group.
It was this approach which was used to program the early von Neumann
machines and which has been refined over the years. The main
characteristic is that the language enables a user to specify a sequence of
operations to perform the calculation; the sequence of operations changes
the state of the machine hence the description as 'state oriented' languages.
The central operation of these languages is that of assignment which
enables any location in the machine to be changed.

Within this broad category there have been separate developments under
the headings of procedural languages and object oriented languages.

3.1.1 PROCEDURAL LANGUAGES

The procedural approach in a language means that constructs are provided
for modularising the program code; this capitalises upon the experience
which has been gained from the design and implementation of sequential
languages.

There is more than one architectural model which can support this type of
language approach. The main models are the array/vector processor and
multiprocessor/distributed systems.

(i) Implicit Approach

An approach which was in widespread use on the early parallel machines
is known as the implicit or detection of parallelism approach. This is an
attempt to make the transfer from sequential to parallel programming as
easy as possible for a user by placing the burden of parallelism detection

www.manaraa.com

174 R.H.PERROT

on the compiler. In this way a user does not have to learn a new language
or get involved with the complexities of parallel programming. The
majority of this work is Fortran based.

Compilers based on this philosophy were first introduced with the advent
of vector processors. Initially such machines had to handle data
parallelism involving pipelined processing only but now they have been
extended to multiple processor based systems.

In general, the main strategy of a parallelisation system is to examine
nested 00 loops, with the objective of vectorising the innermost loop and
parallelising the outermost loop (assuming hardware support). The
methods rely on data dependence analysis techniques which determine the
flow of data in a program. This, in tum, enables statements which can be
executed in parallel, to be identified. Data dependence analysis is the
cornerstone on which all automatic parallelism detection methods are built;
the quality of a paralleliser is directly related to the quality of the
dependence analyser. Currently data dependence analysis techniques are
available for nested DO loops but have not yet been commercially applied
to complete programs.

At present the challenge in the field of parallelisation is to perform whole
program optimisation. This requires full interprocedural analysis (the
tracking of data across procedure calls) to be performed on a user
program. Once a compiler uses interprocedural information as a basis for
compile time decisions, data dependencies between procedures in a
program can be resolved. The systems developed at Rice University and
IBM Thomas J. Watson Research Laboratory provide a limited form of
interprocedural analysis.

There are certain parallel programming situations which can be
automatically parallelised without any user intervention. The most
straightforward situation consists of loops with no data dependency
between the iterations. In this case the iterations can be assigned to the
processors either individually or in groups depending on the scheduling
algorithm used by the particular system; in some systems a programmer
has the option of specifying which processors to utilise.

In other situations if there is a possibility of a data dependency occurring
within a program loop the compiler takes a conservative view which
usually means that no parallelisation is attempted. The burden is then
placed on a programmer to decide if the compiler's decision should be
overridden. This is particularly the case in situations where
interprocedural analysis is required as most existing systems are not
capable of performing this analysis. Interprocedural dependencies are

www.manaraa.com

DEVELOPMENTS IN PARALLEL PROGRAMMING LANGUAGES 175

often difficult to detect and can require a considerable level of skill on
behalf of a programmer.

Most of the work in this area has been based on the shared memory
model. These systems have taken a considerable number of years to
develop and are limited in what they can do.

The success of vectorisation in the 1970s has raised the expectations of the
scientific programming community so that they now expect (if not
demand) compilers which will automatically translate a sequential program
for efficient execution on a parallel computer. This has meant that users
are less tolerant towards new languages or language extensions.

The main research laboratories which have been active in this area are the
following:

Cray Research with CFf (Minnesota);
University of Illinois with Parafrase (Illinois);
IBM with Ptran (New York);
Rice University with the PFC systems (Texas);
Superb as part of the Suprenum project (Europe);
Velour at Honeywell Bull (Europe).

In addition many computer manufactures such as Convex and Alliant have
produced systems for their particular machine.

(ii) Explicit Approach - Array and Vector Processing Languages

Languages for array and vector processor machines should provide
features which enable a programmer to express the parallelism in the data
of the application as well as its subsequent manipulation. This type of
parallelism is therefore data oriented and, as a result, it is sometimes
referred to as lockstep parallelism; a single instruction is broadcast and
applied simultaneously to many different data sets.

This approach has been particularly widely promoted by array processors
such as the Illiac IV (Barnes 1968, Hord 1984), AMT Distributed Array
Processor (Parkinson, 1983), Connection Machine (Hillis, 1985) etc.

Since the early days of these machines, particularly in the case of array
processors, languages have been designed and implemented which have
included features to represent data parallelism. The main method of
achieving this is to use the array data structure and to enhance its syntax to
include parallelism. Most of the work in this area has been carried out by
computer manufacturers and involves the manufacturer's particular
architecture. Another characteristic of these languages is that the majority

www.manaraa.com

176 R.H.PERROT

of the software developed is based on Fortran; this is hardly surprising
since the targetted users are engineers and scientists.

Typical of these languages are CFD Fortran for the Illiac IV (Stevens,
1974; Vectran at IBM (paul and Wilson, 1975); Fortran Plus for the AMT
Distributed Array Processor. Exceptions to this Fortran trend are the
languages Actus (Perrott, 1979) which is Pascal based and the language
Booster (paalvast and Sips, 1989). The frrst two projects were carried out
in the USA, the last three in Europe.

In this area of parallel programming the proposed successor to Fortran 77,
currently referred to as Fortran 90, will probably have most impact. This
next Fortran standard will contain features to enable the specification of
data parallelism and its manipulation. This proposed Standard
incorporates some of the ideas that have been proposed in the earlier
mentioned languages.

If past experience is any guide, then Fortran 90 will be the dominant
parallel programming language in this area as the majority of
manufacturers will implement the standard, and the majority of users will
prefer to use a standard programming language.

(iii) Explicit Approach - Multiprocessor/Distributed Systems

In the case of languages for multiple processor systems the imperative
approach has received the most attention. This arose out of the work
carried out on operating systems in the early 1960s. At that time
programmers were designing programs to control and coordinate the many
independent activities in an operating system. It is this work which laid
many of the foundations for this type of parallel programming language.

The term process, or more recently task, is used to describe a sequence
of program instructions that can be performed in parallel with other groups
of program instructions. A program can therefore be represented as a
number of processes which can be executing concurrently. The point at
which a processor is withdrawn from one process and given to another is
dependent on the progress of the processes and the algorithm used to
assign the available processor(s). The nett effect is that processes are
capable of interacting in a time dependent manner.

Thus, in a concurrent programming environment, a programmer requires
not only program and data structures similar to those required in a
sequential programming environment but also mechanisms to control the
interaction of the processes - processes which are proceeding at fixed but
unknown rates.

www.manaraa.com

DEVELOPMENTS IN PARALLEL PROGRAMMING LANGUAGES 177

The situations in which processes interact can be divided into two
categories. The first situation occurs whenever several processes wish to
access a resource at the same time. For example, when several processes
wish to update a shared variable, only one process must succeed in
gaining access to the resource at any time. Once a process has obtained
the resource it must be able to use the resource without interference from
the other competing processes; this is referred as mutual exclusion.

The second situation occurs whenever processes are co-operating, they
must be correctly synchronised with respect to each other's activities. For
example, when one process requires a result not yet produced by another
process, the first process must be able to wait on the second process and
the second process must take the responsibility of resuming the first
process when it arrives with the result. The processes are therefore
scheduling one another and are aware of each other's existence and
purpose; this is referred to as conditional synchronisation.

The methods which have been used for solving these problems have
evolved over the years. Originally they were at a low level and involved
instructions like test and set, where two operations could be performed
without interruption. In the early 1960s Dijkstra introduced the
semaphore based on the railway signalling system. Although sufficient to
solve the problems they could lead to programming situations which were
difficult to understand and complex in nature.

Experience and research produced a series of solutions such as critical
regions and conditional critical regions, finally resulting in the monitor
(Perrott, 1987). The monitor can be regarded as state-of-the-art in shared
memory concepts for parallel programming. The monitor was influenced
by the class concept of Simula.

A monitor defines a shared data structure and all the operations that can be
performed on it. These operations are defined by the procedures or
functions of the monitor. In addition, a monitor defines an initialisation
operation that is executed when its data structure is created.

In general, a process can access the shared data of a monitor by calling
one of the monitor's procedures. If there is more than one call then only
one of the calling processes is allowed to succeed in entering the monitor
at any time; this is to guarantee that the data of the monitor is accessed
exclusively. Only when a process exits the monitor is it possible for one
of the calling processes which was delayed to enter the monitor.

It is also possible for a process to enter the monitor and discover that the
information it requires has not yet arrived. In such a situation, it can join a
queue associated with that condition and thereby release its exclusive

www.manaraa.com

178 R.H.PERROT

access over the monitor, after which another process is now able to enter
the monitor. Eventually, a process may enter the monitor and enable a
suspended process to continue. The queues within a monitor are usually
identified by condition variables and a process can append itself to a single
condition variable queue by executing a wait operation. Another process
executing a signal operation on a condition variable queue will cause a
process delayed on that queue (if there is one) to be resumed.

A second technique which can be used to solve the problems associated
with mutual exclusion and conditional synchronisation is based on
message passing.

In 1975 Dijkstra (Dijkstra, 1975) introduced, the concept of a guarded
command. A guarded command is simply a guard, which is a boolean
expression, followed by a list of statements. If the guard is true the
associated statements can be executed otherwise they cannot. It is
possible to group several of these guarded commands together to form
selection and repetitive constructs.

It was Hoare (Hoare, 1978) who incorporated these ideas into the notation
known as communicating sequential processes (CSP). The essential idea
is that synchronisation is set up by message passing using input/output
commands. Effectively an output command in a sender process must
specify the destination process. An input command in a receiver process
must specify the source process and the parameter lists must match. Only
under these conditions is it possible for two processes to communicate.
Hoare took this idea and combined it with Dijkstra's guarded commands
by enabling an input command to occur in a guarded command. One
significant feature of Hoare's processes is that they must name each other
in order to communicate; there is a symmetrical relationship between the
processes. This was felt to be restrictive and Brinch Hansen (Brinch
Hansen, 1978) proposed a notation known as distributed processes (DP)
in which the process which is called does not need to know the name of
the process which called it. This would seem to be reasonable in an
environment, for example, where a library facility was being called by
many processes. It is not necessary for the library process to know which
process is calling it. This amounts to an asymmetric relationship between
the calling and called processes.

This technique of message passing has been adopted in languages such as
Ada (Ada, 1983) and Occam (Inmos, 1984).

Hence, with this technique, all communication is explicit through the
transfer of values; there is no reading and writing of shared variables and
no explicit queues have to be manipulated by a user. A significant
enhancement to this technique is the idea of non determinism, in other

www.manaraa.com

DEVELOPMENTS IN PARALLEL PROGRAMMING LANGUAGES 179

words given a choice of several true guards one is picked at random. This
was meant to reflect the way in which real time events occur; it is not
possible to predict their order and therefore this should be incorporated
into any programming notation.

The disadvantages of using a new parallel language is that it requires the
users to rebuild their entire software base - a highly labour intensive and
error prone operation. By doing so it ignores all the existing applications
which have been accumulated. In addition, there is strong resistance
against a new language by some users - the not-invented-here syndrome.
However, the major advantage of using a new language is that it provides
a coherent approach to parallelism, including a parallel notation, in which
to design and discover new algorithms.

As a result of the proliferation of parallel Fortran dialects, steps have been
taken in the US to try to standardise parallel languages for shared memory
machines. A number of US academics and suppliers of parallel machines
have been meeting as a group known as the Parallel Computing Forum
(PCF). The objective of this Forum is to produce common extended
Fortran syntax and semantics which allow concurrent processing to be
expressed easily. The membership of the Forum is such that its
deliberations are likely to be widely adopted.

The PCF syntax and semantics provides basic parallel constructs for
specifying parallel processing, suitable for execution on a shared memory
multiprocessor. One goal of these extensions is to avoid a program's
dependence on the actual number of processors available at any given time
to execute the program. Since a programmer is not constrained to coding
for a limited number of processors the program may describe either more
or less parallelism than there are processors in the actual system. An
implementation of these extensions requires at least one processor to
execute a parallel construct. Consequently a programmer can control the
number of processors executing a program.

Recently the deliberations of the Parallel Computing Forum have been
passed to the US Standards organisation, ANSI, who have set up a
committee X3H5 to produce a Fortran based standard for shared memory
multiprocessor machines. If, or when, such a standard is produced it is
likely to have a major impact on languages for multiprocessor machines
throughout the US and beyond.

Although the experience that has been accumulated in the use of these
languages is limited there does appear to be some consensus and
guidelines emerging. It appears relatively easy to write programs for
shared memory machines while debugging is difficult. This indicates that
by using shared variables the effect of doing something incorrect can

www.manaraa.com

180 R.H.PERROT

manifest itself at a later time, giving no indication of when the error
occurred and proving extremely difficult to detect. Distributed memory
systems appear to be hard to program but easier to debug. The easier
debugging is a consequence of the data being distributed and therefore the
effects of an error being localised. Data organisation is therefore the key
to efficient programming even on shared memory multiprocessors. These
results are based on the scientific users first experience with these
machines and do not involve the use of languages of such sophistication
as illustrated earlier.

3.1.2. OBJECT ORIENTED LANGUAGES

In the last decade an approach to imperative programming which has
gained widespread popularity is that of object oriented programming. In
this approach an object is used to integrate both data and the means of
manipulating that data. Objects interact exclusively through message
passing and the data contained in an object are visible only within the
object itself. Objects are intended for structuring programs in a clear and
understandable way. Thus the connection with the class structure of
Simula is very strong.

The behaviour of an object is defined by its class, which comprises a list
of operations that can be invoked by sending a message to the object. All
objects must belong to a class. Objects in a class have the same properties
and can be manipulated using similar operators. The definition of an
object class can act as a template for creating instances of the class. Each
instance has a unique identity but has the same set of data properties and
responds to the same set of operators.

Inheritance, allows a class to be defined as an extension of another
(previously defined) class. Typically when a new object class is created a
place for it is defined within the class hierarchy. The effect of this is that
the new class inherits the state and operators of its superclass in the
hierarchy. In addition, new properties of the state and new methods may
be defined to augment the new object class.

Communication between objects is achieved by the passing of messages.
A message is a request from the sender for the receiver to execute a
procedure, called a method. An object is activated when it receives a
message from another object. While the receiver of the message is active,
the sender is waiting for the result, so the sender is passive. After
returning the result, the receiver becomes passive again and the sender
continues. At any time only one object in the system is active.

Object oriented programming encourages the grouping together of
pertinent information and enforces the encapsulation of this information

www.manaraa.com

DEVELOPMENTS IN PARALLEL PROGRAMMING LANGUAGES 181

according to an explicit interrace. For users of a certain class, the set of
available operations, together with a description of their behaviour is all
that i~ relevant. The interior of the objects, the variables and the code, is
completely inaccessible to them.

Most existing object oriented languages are sequential in nature and
observe the following restrictions:

(i) execution starts with exactly one object being active,
(ii) whenever an object sends a message, it waits until the result of that

message is returned,
(iii) an object is only active when it is executing a procedure in response

to an incoming message.

At any moment there is exactly one active object, although very often
control is transferred from one object to another.

There are several possibilities for the introduction of parallelism, namely,

(i) objects are active without having received a message;
(ii) receiving objects continue to execute after returning results;
(iii) messages are sent to several active objects at the same time;
(iv) senders of a messages proceed in parallel with the receivers.

These possibilities can be realised by associating a process with each
object. The introduction of processes means that several processes can be
active at the same time. Facilities which provide synchronisation and
mutual exclusion are usually supplied as built-in classes, for example, the
semaphore. Examples of languages which have followed this approach
are Concurrent Smalltalk (Yokote et al, 1986), Emerald (Black et al' 1987)
etc.

Allowing a sender to proceed in parallel with a receiver corresponds to
asynchronous rather than synchronous message passing. With
synchronous message passing the sender is blocked until the receiver has
accepted the message. Thus, the sender and receiver not only exchange
data but they also synchronise their activities. With asynchronous
message passing, the sender does not wait for the receiver to be ready to
accept a message. Conceptually the sender continues immediately after
sending the message. It is possible to obtain a large degree of parallelism
after a number of messages have been sent. This scheme has been
adopted most notably by the family of actor languages (Agha 1986).

Parallel object oriented programming languages have many similarities
with the earlier parallel procedural languages. For example, in using
processes to identify a section of code which can be executed in parallel

www.manaraa.com

182 R. H. PERROT

and providing facilities to solve the problems of mutual exclusion and
synchronisation. However, their major advantages are in the areas of data
hiding and code reuse.

3.2 DECLARATIVE LANGUAGES

Another major approach to language design is that represented by the
declarative approach. In this case a notation is used to represent what is to
be calculated rather than how the calculation is to be performed. How the
calculation is performed depends on the implementation of the language
and is not meant to be a concern of a programmer. A major difference
between this approach and the imperative approach is that in the
declarative approach there is no concept of state; a programmer does not
work or think in terms of state transitions.

Essentially there are two main models

(i) the logic model which is based on the relation between entities;
(ii) the functional model which is based on the use of functions.

The main argument in favour of the declarative approach compared to the
imperative approach is that the notation is at a higher level of abstraction
so that a user does not, for example, have to be concerned about
architectural details.

An attractive property, particularly for computer scientists, is that formal
assessment of declarative languages is easier due to the their mathematical
basis; the ability to prove a program correct is becoming an increasingly
important property. However, a major criticism is that declarative
languages have not been efficiently implemented; the advent of parallel
architectures represents an opportunity to explore their efficient
implementation.

3.2.1. LOGIC LANGUAGES

In this type of programming the underlying computational unit is the
relation and the approach concentrates on proving entities rather than
building entities as in imperative languages. A logic program is
constructed as a finite set of clauses where a clause is a formula of the
form

H <- Bl, B2, --- Bn n >=0

where H is referred to as the clause's head and Bl, B2, --- Bn its body.

www.manaraa.com

DEVELOPMENTS IN PARALLEL PROGRAMMING LANGUAGES 183

It can be thought of as either (i) a logical statement, that is, if all the B's
are true then H is true - the declarative interpretation. or (ii) to prove
theorem H you have to prove sub theorems Bl, B2 etc. - the procedural
interpretation.

The earliest programming language based on this approach is Prolog
(PROgramming in WGic) which was developed in the early 1970s by
Colmerauer and his colleagues at the University of Marseilles. It has
become an essential language in the artificial intelligence field, although it
has been used in many other appli'cation areas.

Programming in Prolog involves the specification of a set of facts and
rules to form a database of knowledge on a subject. Questions may be
asked of this knowledge database via Prolog which is then responsible for
making inferences. In practice, a Prolog program consists of a set of
clauses where a clause can be a fact, a rule or a question. Prolog uses
Hom clauses which are clauses having at most one literal (one then) in
their head part.

The basic data manipulation operation in logic programs is unification
which results in a substitution. Operationally a substitution can be thought
of as a simultaneous assignment of values to variables except that a
variable can only be assigned a value once, and the value assigned can
itself be another variable or a term containing variables. Hence logic
variables have the single assignment property; initially they are unbound
but once they receive a value, by unification, they cannot be changed.

Logic languages, like Prolog, proceed backward from a goal and use a
depth first, left to right search to try to find answers that satisfy the query.
When a dead end is encountered the implementation backtracks, that is,
retraces its steps and then goes down another path. This sequential
behaviour is a consequence of having to execute on a sequential
processor. In order to improve efficiency in many implementations extra
logical control features have been introduced.

There are several opportunities for introducing parallelism. The main
sources of parallelism can be classified as

(i) AND-parallelism comes from trying to solve many parts of the
problem simultaneously, that is, pursuing solutions to a number of
subgoals at the same time. The main goal is solved if the first sub goal is
solved AND, the second AND, the third etc.

(ii) OR-parallelism involves the evaluation of a problem in several ways at
the same time. The problem is solved if the first clause is solved OR, the
second OR, the third etc.

www.manaraa.com

184 R.H.PERROT

In summary, OR-parallelism involves evaluating statements in parallel and
this can be facilitated by taking a copy of the variables involved. AND
parallelism involves working on the body of each statement in parallel.

In concurrent logic languages backtracking is difficult since bindings
would have to be undone and all processes that used the binding
backtracked. As a result, backtracking is avoided in concurrent logic
languages, all clauses are searched in parallel and no bindings are allowed
during parallel executions to be visible outside until one of the parallel
executions is committed to. This can lead to exponential growth which
can be controlled by non deterministic selection.

3.2.2. FUNCTIONAL LANGUAGES

Functional programming, as the name implies, involves the use of
functions as the basis for the construction of programs. A functional
program comprises a set of equations describing functions and data
structures which a user wishes to compute. The application of a function
to its arguments is the only control structure; there are no features which
deal with assignment, conditional or looping structures as in imperative
languages. The application of a function to a variable can produce a new
variable and a new value but never change an old value. Functions are
regarded as in the mathematical sense in that they do not give rise to side
effects that can occur in, for example, Fortran functions. As a
consequence a value of a function is determined solely by the values of its
arguments, a property which is referred to as referential transparency; side
effects mean the loss of referential transparency. In this approach to
programming there is no concept of state which is associated with
imperative languages.

It is claimed that, in comparison to imperative languages, functional
languages have simpler semantics and are easier to write, understand,
manipulate as well as manipulate in program transformations and
correctness proofs. One of the major goals of the functional language
community is to demonstrate that side effect free programming can be
achieved without sacrificing efficiency or modularity; parallel architectures
may enable this goal to be realised.

The introduction of functional programming was heavily influenced by the
lambda calculus. In the lambda calculus the term XY means X applied to
Y while A.X.(X+l) is an expression for the function f(X) = X+l. The
lambda indicates that a function is being defined where X is the bound
variable of the function, and .X + 1 is the body or form of the function.
The only execution step possible is the application of a function to its
argument. The function is on the left and its argument is the next complete

www.manaraa.com

DEVELOPMENTS IN PARALLEL PROGRAMMING LANGUAGES 185

expression to the right. The argument should be substituted where
occurrences of the function's bound variable appear in the function body.

The earliest language which utilises this approach was LISP (McCarthy,
1960, 1963). LISP is based on function evaluation but employs
imperative constructs to control the process of expression evaluation. The
list is the essential data structure. There are good function abstraction
features but poor data abstraction features. Modem variants, for example,
Scheme (Rees and Clinger, 1986), have introduced stronger type
checking, and also scoping of mimes to help in the production of modular
software.

The main features which characterise the more recent functional languages
are the following:

(i) higher order functions
means that functions are treated as first class values which can be stored in
data structures, passed as arguments and returned as results. Thus,
functions are values just like any other values in the program and can
appear anywhere a value can appear.

(ii) lazy evaluation (or call by need)
means that in a functional expression the arguments are reduced only on
demand, that is, the arguments to a function are evaluated only when
needed and not when the function is called, so unneeded results are never
calculated. The opposite technique is eager (greedy) evaluation where the
arguments to a function are always evaluated before the function is
applied. Lazy evaluation has been advocated as an optimal evaluation
strategy for the implementation of functional programs on a sequential
processor, optimal that is with respect to evaluation time, however, call by
need is not optimal with respect to space.

(iii) equations and pattern matching
means programmers can write several equations when defining the same
function; only one of the equations is applicable in a given solution.
Pattern matching is used to determine which equation is applicable; this is
referred to as equational reasoning in the design and construction of
programs.

(iv) data abstraction
improves the modularity, security and clarity of programs. Strong static
checking helps in reducing errors. This is true for other language
approaches as well. An infinite data structure is equivalent to a recursively
defined data structure.

www.manaraa.com

186 R. H. PERROT

Functions which return defined results even when the arguments are
undefined are called non strict whereas functions which are always
undefmed with undefined arguments are called strict. In the latter case a
computation can have a well defined outcome even though some of its
component computations may be undefined, provided they are not needed
to define that outcome. Lazy evaluation is compatible with a non strict
interpretation of a function definition, while eager evaluation is compatible
with strict interpretation of a function defmition.

Recently a group of research workers in the field of functional
programming got together to produce a standard for functional languages,
one of their concerns was to avoid a proliferation of languages in this area.
The result of their effort is a new functional programming language called
Haskell (Hudak and Wadler, 1988). The standardisation process was an
international effort and involved research workers from both Europe and
America. Haskell is a purely functional programming language with
higher order functions, lazy evaluation, static polymorphic typing, user
defined data types, and pattern matching. Haskell also has a module
facility, a well defined functional input/output system and a rich set of
primitive data types including lists, arrays, arbitrary and fixed precision
integers and floating point numbers.

In general, there are still inefficiencies connected with the implementation
of features such as higher order functions and lazy evaluation; these are
concerned with the overhead of dynamic storage management. Also the
removal of side effects results in the need for more memory capacity and
bandwidth which produces a bottleneck in a sequential von Neumann
machine. Many of these problems must be solved before functional
languages can execute with speeds comparable to that of imperative
languages.

The benefits of parallel processing for functional programming are realised
by means of the Church Rosser Theorem which states that any reduction
sequence which yields a reduced form may be used in the evaluation of a
function. More specifically, if a given lambda expression is reduced by
two different reduction techniques and if both reduction sequences yield a
reduced form then the reduced forms are equivalent up to renaming of
bound variables.

Informally this property states that the same answer is produced when
reducing any expression, no matter in what order the indexes are reduced
provided the reduction sequence terminates. If the evaluation sequence
does not matter then the reduction can be done in parallel without
worrying about the order in which they finish.

www.manaraa.com

DEVELOPMENTS IN PARALLEL PROGRAMMING LANGUAGES 187

If functions do not have side effects then it makes no difference in which
order they are executed and it is therefore possible to evaluate them in
parallel. The only delay may be that a function must wait on a result being
produced by another function. The compiler should analyse the program
to decide on the evaluation order.

Parallelism in functional languages is therefore manifest through data
dependencies and the semantics of primitive operators in contrast to
conventional languages where e~plicit constructs are typically used to
invoke synchronisataion and coordinate concurrent activities. In most
systems parallelism is detected by the system and allocated to the
processors automatically - implicit parallelism.

Hudak (Hudak, 1989) argues that functional programming is just an
evolution of the imperative approach since languages like Fortran had
expressions as an important feature with a mathematical flavour and
subsequent languages like Pascal built on this theme using the function.
Functional programming is therefore the logical conclusion since
everything is treated as an expression.

4. Summary

A complete solution to the problem of parallel computing involves several
components: the design of parallel algorithms, the type of programming
language and the characteristics of the underlying architecture. Currently
it is the programming languages (and tools) which require the most urgent
attention.

In the imperative approach explicit parallel programming features are
provided to enable a programmer to construct a parallel solution and to
help the implementation utilise the parallel processing capability of the
underlying architecture. In the declarative approach the parallelism is not
(normally) explicit in the language; and the burden is placed on the
implementation to realise the parallelism in the solution. In certain projects
each approach has 'borrowed' features from the other approach. For
example, there are declarative languages which provide explicit parallel
features to assist a user in identifying the parallelism in a solution.
Conversely, in the imperative approach there has been much research into
automatic parallelisation of sequential programs.

Recently it has been pointed out that the differences between these two
approaches may not be as great as originally thought. The reasoning is as
follows: in languages, like Fortran, the expression is an important concept
with a strong mathematical basis; subsequent languages, like Pascal, built
on this theme using the function. Functional programming can therefore

www.manaraa.com

188 R. H.PERROT

be regarded as the logical extension of this trend where everything is a
function/expression.

References

Ada 1983. Reference Manual for the Ada Programming Language.
(ANSI/MIL-STD 1815). United States Department of Defense.
Washington. D.C.

Agha G. 1986. Actors: A model of concurrent computation in
distributed systems. MIT Press.

Barnes G H., Brown N.M .• Kato M., Kuck D .• Slotnick D., and Stokes N
A. 1968. 'The Illiac IV Computer'. IEEE. Trans. on Computers, 17,
746-757.

Black A., Hutchinson N., Jul E., Levy H. and Carter L. 1987.
'Distribution and abstract types in Emerald', IEEE Trans Software
Eng SE 13, 1 (Jan). 65-76

Brinch Hansen P. 1978. 'Distributed Processes: A Concurrent
Programming Concept'. Communications ACM, 21, 934-940.

Dijkstra E W. 1975. 'Guarded Commands. Non-determinacy, and
Formal Derivation of Programs'. Communications ACM, 18, 453-457.

Hillis W D. 1985. The Connection Machine, MIT Press.

Hoare CAR. 1978. 'Communicating Sequential Processes'.
Communications ACM, 21, 666-677.

Hord R M. 1984. The Illiac IV - The First Supercomputer. Computer
Science Press, Maryland.

Hudak P. 1989. 'Conception,
Functional Programming Languages'.

evaluation, and Application of
ACM Surveys, 21, 3. 359-411.

Hudak P., and Wadler P. Eds. 1988. Report on the Functional
Programming Language Haskell. Tech. Rep. YALE U ./DCS/RR656.
Department of Computer Science, Yale University.

Inmos Ltd. 1984. Occam Programming Manual. Prentice-Hall.
Englewood Cliffs, New Jersey.

www.manaraa.com

DEVELOPMENTS IN PARALLEL PROGRAMMING LANGUAGES 189

McCarthy J. 1960. Recursive functions of symbolic expressions and
their computation by machine, Part I. Communications ACM 3,4,
184-195.

McCarthy J. 1963. A basis for a mathematical theory of
computation. In Computer Programming and Formal Systems.
North-Holland, The Netherlands, 33-70.

Parkinson D. 1983. 'The Distributed Array Processor'. Computer
Physics Communications ACM, 28, 325-336.

Paalvast E M. and Sips H J. 1989. 'A high level language for the
description of parallel algorithms', Parallel Computing 89
Published by North Holland.

Paul G. and Wilson W. 1975. The Vectran language: and
experimental language for vector/matrix array processing' IBM
Palo Alto Scientific Center, Report 6320-3334.

Perrott R H. 1979. 'A Language for Array and Vector Processors'.
ACM Trans. on Programming. Lang. Systems, 2, 177-195.

Perrott R H. 1987. Parallel Programming. Addison-Wesley.

Rees J. and Clinger W. Eds. 1986. The revised report on the
algorithmic language Scheme. Sigplan Notices 21, 12, 37-79.

Stevens K. 1974. 'CFD - A FORTRAN-like Language for the ILLIAC IV'.
Sigplan Notices, 10, 72-80.

Yokote Y. and Tokoro M. 1986. 'The design and implementation of
Concurrent Smalltalk'. In Proceedings of Object-Oriented
Programming Systems, Languages and Applications 1986.
Sigplan Not (ACM), 21, 11, 331-340.

www.manaraa.com

LOAD BALANCING GRID· ORIENTED APPLICATIONS

ON DISTRIBUTED MEMORY PARALLEL COMPUTERS

D. ROOSE, J. DE KEYSER and R. VAN DRIESSCHE
K atholieke Universiteit Leuven

Dept. of Computer Science
Celestijnenlaan 200A, B·3001 Heverlee.Leuven, Belgium

Abstract. Loa.d balancing grid-oriented applications on distributed memory parallel computers
requires an optimal partitioning and distribution of the data among the processors. In this paper,
we first summarise typical properties of grid-oriented applications by describing the types of grids
that often arise in the solution of partial differential equations, together with characteristics of
iterative algorithms and the resulting data dependencies. We survey some important methods for
partitioning and mapping that take into account these properties. Two techniques are discussed
in more detail : recursive bisection based on a cost function and genetic algorithms.

Key words: parallel computing, distributed memory, loa.d balancing, graph partitioning, task
to-processor mapping problem, grid-oriented applications

1. Introduction

Distributed memory parallel computers consist of a number of nodes, i.e. proces
sors with a private local memory, connected by a communication network. Parallel
computers with distributed memory are gaining importance and are now surpass
ing vector processors and shared memory multiprocessors in performance.

At present, the principles of parallel algorithm design are well established. Most
often, the data set and the associated work are partitioned and distributed among
the processing nodes. This 'data parallelism' is especially well suited for grid
oriented problems, such as the numerical solution of partial differential equations.
Nevertheless, the development of parallel algorithms and software is often difficult
and tedious. This paper addresses one of the main reasons for this.

The problem of finding an appropriate partitioning and mapping (distribution)
that minimises (approximately) the execution time is called the load balancing
problem. Being an NP-complete problem, load balancing is inherently very diffi
cult. In order to find a good solution one should exploit as much as possible the
characteristics of the data set and of the algorithms acting on it.

Many methods for partitioning and mapping are described in the literature.
Until recently these problems were mainly studied in the context of distributed
systems. In this paper we survey some techniques for partitioning and mapping
that do take into account typical properties and requirements of numerical grid
oriented problems. This is illustrated with some of our own research results.

In section 2 we introduce several types of grids that arise in solving partial
differential equations. In section 3 we state the load balancing problem for grid
oriented problems, with emphasis on iterative solution algorithms, and we derive
criteria that must be satisfied during partitioning and mapping. In section 4 we
review some partitioning and mapping techniques. Subsequently, two techniques

191

P. DewildeandJ. Vandewalle (eds.). CompUlerSysrems and Software Engineering. 191-216.
@ 1992 Kluwer Academic Publishers.

www.manaraa.com

192 D. ROOSE ET AL.

are discussed in more detail: recursive bisection based on a cost function (section
5) and genetic algorithms (section 6).

2. Grid-Oriented Applications

2.1. GRIDS AND GRID DATA STRUCTURES

The numerical solution of partial differential equations (PDEs) requires a discreti
sation using e.g. finite differences, finite volumes or finite elements. The continuous
domain on which the PDE must be solved is replaced by a discrete grid of points
(or cells or elements). In this paper we use point as a generic name for the data
associated with a grid point, finite volume cell or finite element. Thus a 'point' is
the basic data item. The word grid refers both to the discrete domain and to the
data structure associated with it, i.e. the set of points.

We now describe different types of grids that often arise in PDE computations.
This will allow to assess some of the requirements and the difficulties of load
balancing grid-oriented problems. We discuss here only two-dimensional grids, but
the extension to three dimensions is straightforward.

REGULAR GRIDS

We call a grid regular or structured when (a) the boundary is rectangular or
logically rectangular and (b) each point has exactly four neighbours, except at the
boundaries. Thus regular grids are represented by data structures in which a point
can be localised easily via indices.

A logically rectangular grid is shown in Fig. 1a. Regular grids are appropriate
for many applications. Load balancing techniques for regular grids are well known
[13].

IRREGULAR GRIDS

For a number of applications, the use of irregular (i.e. non-regular) grids can be
required, for example

in the case of complex domain boundaries,
in solution-adaptive algorithms, in which the grid is refined locally during the
calculation.

We can distinguish several types of irregularities.
A block-structured grid consists of a union of structured subgrids, called blocks,

see Fig. lb. In general, numerical methods deal with each block separately. Thus
the application imposes already a partitioning of the grid and load balancing con
sists only of mapping the blocks onto the processors.

In an unstructured grid a point can have a varying number of neighbours.
But also a grid that consists of triangular elements or cells as shown in Fig. 2a is
unstructured.

We call a grid internally-regular when only condition (a) for regular grids is
violated, see Fig. 2b.

www.manaraa.com

LOAD BALANCING GRID-ORIENTED APPLICATIONS 193

'I

'1~
Fig. 1. a) Logically rectangular grid; b) Block-structured grid

Fig. 2. a) Unstructured grid (adaptively refined); b) Internally-regular grid

Fig. 3. Unstructured multi-level grids: two consecutive grids

Fig. 4. Composite grid (grids of all levels are superimposed)

www.manaraa.com

194 D. ROOSE ET AL.

MULTI-LEVEL GRIDS

In multi-level or multigrid algorithms a hierarchy of grids is used.
A hierarchy of structured multi-level grids is obtained when, starting from a
(fine) regular grid, coarser grids are obtained by decreasing the number of
grid points in each direction by a factor of two [6].
Multi-level algorithms can also be defined on unstructured multi-level grids,
i.e. a hierarchy of unstructured grids (see e.g. [21]). In Fig. 3 two consecutive
grids of such a hierarchy are shown.
Some multi-level techniques use composite grids, a hierarchy of grids in which
the finer grids do not cover the complete domain but are obtained by refining a
part ofthe next coarser grid, [6] [22], see Fig. 4. One can distinguish composite
grids in which at each level a union ofregular grids is used (see e.g. [25]) and
composite grids in which each level consists of a union of 'internally regular'
grids (see e.g. [30]).

STATIC VERSUS ADAPTIVE GRIDS

Grids can be static, i.e. they do not change during the computation, or can be
adaptively refined during the calculation itself. In the latter case mostly unstruc
tured grids are used. We will see that somewhat different load balancing approaches
are necessary for static and adaptive grids.

2.2. CHARACTERISTICS OF ITERATIVE PDE SOLVERS

In order to develop load balancing strategies for grid-oriented problems, one must
not only take into account the type of the grid, but also characteristics of the
solution procedure and the resulting data dependencies. We restrict our attention
to iterative algorithms for the solution of PDEs, for which the following holds.

1. Each grid point represents (approximately) the same computational cost. Hence
the calculation cost can be modeled accurately and a balanced calculation load
can easily be achieved.

2. Iterative algorithms mainly consist of 'local operations'. The calculation asso
ciated with a grid point e E t: requires information from a small number of
other points, called the neighbours A(e) Ct:. In most cases these neighbours
lie close to the point e, hence this data dependency relation has a geometrical
interpretation.
It is thus natural to group grid points into units u E U, each consisting of a
(preferably) connected set of grid points. Formulated alternatively, the parti
tioning should split the physical domain into connected subdomains.
The data dependencies between points induce a similar relationship between
units. The set of 'neighbouring units' is denoted by A(u) CU. When one
reformulates a single-grid algorithm in terms of these units, the required com
munication is often restricted to the perimeter of the units or sub domains.
In multi-level algorithms some parts of the algorithm transfer information be
tween grids. Hence, besides intra-grid data-dependencies also inter-grid depen-

www.manaraa.com

LOAD BALANCING GRID-ORIENTED APPLICA nONS 195

dencies occur- The latter may cause a communication volume proportional to
the number of grid points. Thus for multi-level grids, units of consecutive grids,
corresponding to the same part of the physical domain, should be mapped as
much as possible onto the same processor [2][10].

3. The numerical efficiency of many algorithms depends on the 'grain size' of the
parallelism. In grid-oriented problems, the 'grain size' can refer e.g. to the size
of the sub domains on which the algorithm acts. A large grain size may lead
to a lower arithmetic complexity or, in case of iterative algorithms, a faster
convergence rate. As a result, large 'units for calculation' can be advantageous.
For example, Red-Black Gauss-Seidel relaxation may converge substantially
slower than block-wise relaxation using a lexicographic ordering of the points
within each block [2][29].

3. Load Balancing Grid-Oriented Problems

3.1. THE LOAD BALANCING PROBLEM

The 'general load balancing problem' can be defined as the problem of scheduling
all operations so as to minimise the total execution time. Scheduling implies de
termining when (scheduling in time) and where (assignment to a processor) each
operation is executed. Considered as an optimisation problem, load balancing re
quires the definition of an objective function that models the execution time. Even
with simple cost models the load balancing problem is NP-complete.

The difficulty can be alleviated by splitting the data parallel algorithm into
a sequence of phases. Each phase consists of operations that can be executed
concurrently, without restrictions caused by data dependencies. We refer to [9] for
a more precise definition of phase. The general load balancing problem can then
be replaced by a series of 'restricted load balancing problems', one for each phase.
It is obvious that the total execution time obtained in this way cannot be smaller
than by solving the general load balancing problem, since we restrict the space of
feasible solutions. On the other hand, load balancing phase per phase reduces the
size of the optimisation problem. This makes it easier to find a (sufficiently) good
solution.

The concepts 'phase' and 'load balancing phase per phase' are well suited for
algorithms for solving PDEs. For example, in the Red-Black Gauss-Seidel relax
ation method, each update of all Red (resp. Black) points can be considered as a
phase. Different phases may require a different partitioning and mapping. When
a grid has been adaptively refined, the workload and the data dependencies have
been changed and the calculation of a new partitioning and mapping can be ad
vantageous. In multi-level algorithms the data dependencies (and thus the com
munication patterns) during the relaxation phase ('intra-grid communication') are
completely different from those during the intergrid transfer phases (restriction
and interpolation), resulting in 'inter-grid communication'.

www.manaraa.com

196 D. ROOSE ET AL.

The remaining optimisation problem is still not trivial. There is a conflict be
tween the minimisation of the calculation cost (or calculation load imbalance) and
the minimisation of the communication cost. When the ratio between calculation
cost and communication cost - which is application and machine dependent -
is high, it can be sufficient to minimise only the calculation cost; otherwise the
complete minimisation problem must be considered.

Modeling the communication time is a major difficulty. The total communica
tion time depends on the communication volume but also on the number of mes
sages because of the 'message startup time', on the communication distance (the
number of physical links on the communication path) and on the link contention.
Especially the latter aspects are hard to model.

3.2. LOAD BALANCING GRID-ORIENTED ITERATIVE ALGORITHMS

The following characteristics of grid-oriented iterative algorithms should form a
basis for load balancing techniques :

The algorithm can be split in phases; the execution of each phase is initiated
by the application program at well-defined moments. Often the calculation
cost associated with a phase is high.
The workload and communication requirements for each unit do not change
during a phase and can be predicted rather accurately

Load balancing can thus be achieved by an appropriate partitioning and mapping
of the data for each phase.

When the algorithm consists of only one phase and when a static grid is used,
partitioning and mapping must be done only at the beginning of the calculation
('static load balancing'). This pre-processing step may be expensive. When a data
parallel program consists of several phases, e.g. when multi-level algorithms or
adaptive refinement procedures are used, a different data distribution may be
required for each phase. When the execution time for each phase is relatively
large, it may be advantageous to re-distribute the data and the associated work
by a static load balancing procedure at the beginning of each phase. This is only
feasible when the execution time of the load balancing algorithm is low.

In case of adaptive refinement, re-balancing the load after each refinement is
called 'iterative static load balancing' [11] (or 'quasi-dynamic load balancing' [31]).
Ideally the new data distribution should not differ too much from the previous one,
in order to keep the remapping cost low.

Note that under these conditions truly 'dynamic load balancing' [1][3] is not
necessary.

Each phase of a grid-oriented application can be load balanced either by
A) allocation of grid points to units (= partitioning) and subsequent mapping of

the units onto the processors,
or

www.manaraa.com

LOAD BALANCING GRID-ORIENTED APPLICATIONS 197

B) mapping the individual grid points onto the processors; in this case the set of
units is equal to the set of points.

In both cases the units are considered to be atomic for all operations (calculation
and communication) within the current phase.

During the partitioning step, i.e. the definition of units, various types of restric-
tions can be taken into account - besides those aiming at load balancing:

for 'block algorithms' (with good numerical properties) a unit should be an
interconnected set of points,
representation of units by regular data structures can be mandatory, e.g. to
allow vectorisation,
in multi-level algorithms, the definition of units on the finer grids can impose
conditions for the definition of units on coarser grids (or vice versa) [10].

In these situations partitioning often cannot be automated and should be done by
the application (programmer).

We now formulate some criteria that must be satisfied during partitioning and
mapping. These criteria must be translated mathematically into cost functions
to be minimised or they must form the basis for load balancing heuristics. We
distinguish two different situations, depending on the number of units compared
with the number of processors.

1) THE NUMBER OF UNITS IS EQUAL TO THE NUMBER OF PROCESSORS

In this case, the following criteria must be satisfied approximately [7] :
• during partitioning of the grid:

1. The partitions or units have approximately the same number of points. As
suming that the workload is equal for all points, this ensures load balance.

2. Each partition consists of only one interconnected set of points. Because most
algorithms perform local operations, neighbouring points should be allocated
to the same processor as much as possible in order to minimise communication.
For some algorithms, this also leads to higher numerical efficiencies.

3. The perimeter (Le. the number of points at the boundary between units) is
small. In general this ensures a low communication volume, since for most
problems the communication consists of exchanging data corresponding to the
boundaries of the sub domains.

4. The number of neighbouring units is minimum. Typically, the number of mes
sages is proportional to the number of adjacent subdomains .

• during mapping of units to processing elements:

1. The communication cost between the units is minimal on the given parallel
machine. This requires that the architecture of the parallel machine (e.g. hy
percube,. mesh, ...) is taken into account by considering the communication
distance.

2. The synchronisation among units is low.

www.manaraa.com

198 D. ROOSE ET AL.

Note that this distinction between the partitioning and the mapping steps is some
what artificial and often both groups of criteria are treated together, as in strategy
B) (see above).

In case of iterative static load balancing either a completely new partitioning
must be calculated or the previous partitioning must be adapted by 'cut-and-paste'
operations. The cut-operation splits off a part of a unit with a high workload; the
paste-primitive adds this part to a unit in a less loaded processor, see [11].

2) THERE ARE MUCH MORE UNITS THAN PROCESSORS

This situation typically arises when the units are defined by the application. No
further partitioning step has to be done when static grids are used. In case the
grid is adaptively refined, the workload associated with some units may become
much larger than the load associated with other units. Then a 'split' operation,
which splits a unit into several new units, can be executed [11 J. This enables better
solutions for the mapping problem.
The units must be mapped onto the processors such that each processor receives
approximately the same workload, and such that the criteria for partitioning and
mapping, given above, are satisfied as much as possible.

4. Partitioning and Mapping Techniques

In this section we give an overview of some important partitioning and mapping
techniques for grid-oriented problems.

The set of units (or points) and the data dependencies can be described by a
Unit Interaction Graph (U, ---'» [ll J, also called Task Interaction Graph [28][27J.
The nodes of this graph represent the units u E U. The neighbouring relation
ship between the units is represented by the graph edges. Partitioning the grid is
equivalent to the graph partitioning problem for the UIG. The mapping problem
can also be formulated using a graph-theoretical formulation. Note that when the
processors of the parallel computer are fully interconnected, the mapping problem
is identical to grid (or graph) partitioning.

When we denote the set of processors by Q and the set of units by U, the
solution to the mapping problem can be represented as a function ('mapping')
m : U ~ Q, that assigns unit u to processor m(u).

Partitioning and mapping techniques can differ in various ways.
The solution strategy: both the solution of the partitioning problem and the
computation of the mapping m can be obtained by explicit minimisation of a
cost function or by an heuristic approach.
Global or local mapping: using information about all units theoretically leads
to the best result. Local mapping methods use only information about units
in a processor subset; this approach results in easier to solve problems and is
certainly cheaper.

www.manaraa.com

LOAD BALANCING GRID-ORIENTED APPLICATIONS 199

Centralised or distributed implementation: both local and global mapping
techniques can benefit from a parallel implementation of the algorithm.

In the graph (U, -;.) weights can be assigned to graph nodes and edges, giving
information about the cost involved in the corresponding calculation and com
munication. This information is sufficient to construct simple cost models. Let P
be the number of processors and N the number of units. Let tcalc be the time
to perform one floating point operation on the particular machine and let Ci be
the number of floating point operations to be performed for unit Ui. Then the
calculation cost associated with Ui is Aii = tcalcCi. Let tcomm he the time to send
one word between neighbouring processors and let Cij be the number of words
to be sent from Ui to Uj. Then the communication cost can be approximated by
Aij = tcomm Cij· The set of units assigned to processor q is denoted by U(q). t:..(p, q)
represents the graph distance between processors p and q, i.e. the minimal number
of graph edges that have to be traversed in order to go from p to q. The distance
between the processors holding units Ui and Uj is denoted by t:..ij.

In section 5 we will use the following simple cost functions to solve the mapping
problem:

Cl(m) = max ~ J\-.
qEQ ~ 11

1J.iEU(q)

Cz(m) = max (I: Aii + max Aiit:..ii)
qEQ 1J.;EU(q) U; E U(q)

Uj E A(Ui)

Cost function Clean be considered to be the model of a fully connected machine
with infinite communication bandwidth and zero startup time. C2 assumes a finite
communication speed and takes into account the machine topology via the t:..j;
factor. This will force the maximum distance between the processors onto which
neighbouring units are mapped to be minimal, at least if this does not endanger
the calculation load balance.

We now present a classification that is based on the solution strategy.

A) OPTIMISATION TECHNIQUES BASED ON A COST FUNCTION

1. Branch-and-bound algorithms :
The assignment of points or units to the processors is a discrete optimisation
problem that can be solved by a branch-and-bound algorithm. The solution
space has cardinality N p. Because of the large search space, enumeration of all
possible solutions is prohibitively expensive. However, in general some symme
try properties that are present in the cost function and the underlying hardware
can be used to reduce the search space, see e.g. [9]. In spite of these simpli
fi.cations, branch-and-bound algorithms - while being exact - remain too
expensive in practice.

www.manaraa.com

200 D. ROOSE ET AL.

2. Simulated annealing techniques:
Simulated annealing is a very general optimisation method which stochastically
simulates the slow cooling of a physical system. The idea is that there is a cost
function C which associates a cost with a state of the system, a 'temperature'
T and various ways to change the state of the system, see e.g. [31] [14] [15].
Changes are proposed and the resulting changes D..C in C are evaluated in an
iterative procedure, while the temperature T gradually decreases to zero. A
change is accepted or rejected according to the Metropolis criterion : if the
cost function decreases the change is accepted unconditionally, otherwise it
is accepted with probability exp(-D..C IT). Under certain conditions ('reacha
bility', sufficiently slow decrease of the temperature) the probability that the
global optimum is found tends to certainty.
R. Williams [31] did extensive experiments with simulated annealing for solving
the partitioning problem. He observed that this approach is rather sensitive
to the choice of a number of parameters of the method (the set of possible
changes, the cooling rate, ...). For sufficiently slow cooling this method pro
duces good solutions, but then the method is very expensive. Note also that
effective parallelisation of simulated annealing is not trivial. We refer to [31]
for more information.

3. Evolution algorithms
Another approach to the graph partitioning problem is proposed by Miihlenbein
et.al. [23]. The mapping problem is transformed into a continuous optimisation
problem by representing the allocation by a matrix x, in which Xij E [0,1] de
notes the probability that unit Ui is allocated to processor qj. The cost function

C(m) = (II L AiiXikXjk)-1

qkEQui,UjEU(q)

represents the intra-partition connectivity, which should be maximised. This
cost function ignores the machine topology and is therefore better suited for de
composition than for mapping. For this (continuous) cost function, the steepest
descent algorithm turns out to be very efficient.

4. Genetic algorithms
Genetic algorithms resemble simulated annealing in that they are also very
general and robust optimisation methods that simulate an optimisation pro
cess found in nature. More specifically, genetic algorithms simulate the pro
cesses of reproduction, crossover and selection that make living beings opti
mally adapted to their environment. Genetic algorithms in the context of load
balancing are further discussed in section 6 .

. 5. Mapping based on minimising a cost function after projection
Chrisochoides et.al. [7] developed a mapping method in which the nodes of
both the UrG and the processor graph are first projected onto an Euclidean
space based on eigenvectors of a matrix related to the adjacency matrix. The
mapping is then determined by minimising a cost function defined in this

www.manaraa.com

LOAD BALANCING GRID-ORIENTED APrLICATIONS ~Ol

Euclidean space (related to the distance between the projected nodes of both
graphs).

B) CLUSTERING TECHNIQUES

Rather than trying to minimise both computational workload imbalance and com
munication simultaneously, the search space can be reduced if only one of both
terms is explicitly modeled while the other is used implicitly in guiding the search
[27].

Some authors have proposed partitioning and mapping strategies based on 'clus
tering techniques'. In these approaches clusters of units are formed with high intra
cluster dependencies and low inter-cluster communication. These clusters form a
partitioning of the data set and can be considered as units for subsequent map
ping. The clustering is based on some sorting of the grid points and subsequent
partitioning.

Sadayappan et. al. [26] [27] propose a 'nearest-neighbour mapping' algorithm,
that proceeds in two steps:

1. An initial mapping is generated by grouping nodes of the UIG in clusters
and assigning clusters to processors so that the nearest-neighbour property is
satisfied, i.e. neighbouring nodes are assigned either to the same processor or
to neighbouring processors.

2. The initial mapping is successively modified using a boundary refinement pro
cedure where nodes are reassigned among processors in a manner that improves
calculation load balance but always maintains the nearest-neighbour property.

Thus the nearest-neighbour mapping scheme explicitly attempts to minimise cal
culation cost, while low communication costs are achieved implicitly by the search
strategy.

Farhat [12] proposes to sort the nodes of the UIG based on the Reverse Cuthill
McKee ordering scheme. This scheme is well known in sparse matrix techniques,
where it is used to reduce the bandwidth and the profile of a matrix by re-ordering
the equations and the unknowns of a linear system.

C) RECURSIVE BISECTION HEURISTICS

A heuristic frequently applied to the graph partitioning problem is recursive bi
section. In this approach P-way partitioning is replaced by repeated 2-way parti
tioning (bisection). Such a procedure is defined by a recursion with depth 10g2 P.

Although recursive bisection is used most often for partitioning [15] [13J [28] [27]
[31]. it can also be applied to the mapping problem [7] [9J. In this case both the
UIG and the processor graph are split recursively; the mapping assigns a partition
of the UIG to the corresponding processor. This technique is applicable to a fully
connected parallel computer, to a mesh of processors, and to hypercubes. In the
latter case there exists a fixed correspondence between the partitions as generated
by the recursive procedure and the recursive numbering of the processors, see [9].

www.manaraa.com

202 D. ROOSE ET AL.

Another approach for mapping partitions generated by a recursive bisection
method is proposed by Sadayappan et.al. [27] and is based on the Kernighan
Lin mincut heuristic [20J. Starting with an initial mapping, pairs of partitions are
swapped in sequence, attempting to minimise the communication cost (taking into
account distances between processors).

Particular recursive bisection heuristics differ in the method used to split a
partition. We now describe some of the possible splitting techniques.

We first assume that the weights of all nodes and edges of the UIG are identical.
This is for example the case when each unit represents one point of the grid. We can
associate a scalar quantity s(u) with each node u of the UIG. Following Williams
[31], we call s(u) a separator field. By evaluating the median S of the separator
field, we can bisect the graph, according to whether s(u) is greater or less than
S. This ensures that the calculation cost (Le. the number of nodes) in each half is
equal. The separator field is chosen so that the communication is minimised. Some
of the possibilities are described below.

geometry based splitting
A simple and cheap choice for the separator field s(u) is based on the geomet
rical position of the corresponding grid point (or unit). We might let the value
of s(u) be the x-coordinate associated with the grid point (the x-coordinate
of the center of an element in case of finite elements). Then the grid is split
in two by a median line parallel to the y-axis. If this procedure is repeated
recursively, we obtain a partitioning of the grid into 'strips'.
In the Orthogonal Recursive Bisection method (ORB), s(u) is chosen to be
alternatingly the x- and the y-coordinate of the point [13] [31]. This technique
implicitly ensures a low inter-processor communication volume. Indeed, for
regular meshes ORB will lead to (almost) square partitions, which minimises
the perimeter of the partitions, ensuring minimal inter-partition communica
tion cost in case of local algorithms.
Experiments of R. Williams [31] show that for irregular meshes ORB can
lead to rather high communication costs, because it pays no attention to the
connectivity of the graph. Note that the partitions obtained by ORB do not
always consist of connected sets of grid points. This is illustrated in Fig .. 5
ORB is incorporated into the software package DIME ('Distributed Irregu
lar Mesh Environment') of R. Williams [32], that is designed for applications
on an irregular grid of triangular cells. The package deals with all communi
cation aspects, allows adaptive refinement and performs iterative static load
balancing.
splitting based on eigenvectors of the Laplacian matrix of the graph
A better method for splitting a graph is based on the eigenvector correspond
ing to the second lowest eigenvalue of the Laplacian matrix of the graph [31]
[4] [8] [24]. This Laplacian matrix is derived from the adjacency matrix of
the graph. In general, this technique yields lower communication costs than

www.manaraa.com

LOAD BALANCING GRID-ORIENTED APPLlCA TIONS 203

Fig. 5. Unstructured triangular mesh , heavily refined between the two 'holes'. Partitioning
in 16 units by Orthogonal Recursive Bisection (ORB), Eigenvector Recursive Bisection
(ERB) and a simulated annealing approach (SA2). This figure is reprinted from [31].

ORB (see also Fig. 5). An important advantage is that partitioning in con
nected sets of points is guaranteed. However, Eigenvector Recursive Bisection
is more expensive that ORB (a factor of 2 is reported in [31]) and the number
of elements migrated can be much larger than with ORB, if these bisection
algorithms are used to rebalance the load after refinement [31J.

The next two splitting techniques allow that different weights are associated with
the nodes and the edges of the UIG. Thus these techniques can be used to solve
the mapping problem when the data set is already partitioned in units.

www.manaraa.com

204 D. ROOSE ET AL.

splitting based on a clustering heuristic
Sadayappan et.al. [27] propose to create an initial load balanced two-way
partitioning. This can be done e.g. by assigning the nodes of the UIG. one by
one, always to the partitioning with lesser total calculation load. Afterwards
an heuristic is used to transfer nodes between the two partitions of the UIG to
minimise the inter-partition communication volume, while maintaining load
balance. The heuristic is based on the Kernighan-Lin min cut algorithm [20].
Note that if all edges of the UIG represent the same communication volume,
minimal inter-partition communication is achieved by a 'minimal cut' of the
inter-partition edges. This approach can be expensive.
splitting based on a cost function
The bisection may be based on the minimisation of a cost function, but now
applied recursively to the 2-way partitioning case. This approach will be dis
cussed in the next section.

5. Recursive Bisection based on a Cost Function

.5.1. BISECTION HEURISTIC

In this section we describe a recursive bisection heuristic based on a cost function
in more detail. We also present the results of some experiments.

We consider the situation in which the application has already partitioned the
problem data set in units, each of which may require a different amol1nt of calcu
lation and communication. Each bisection step can then be based on minimising a
cost function for the 2-way partitioning case. Even if each 2-way problem is solved
exactly, recursive bisection does not yield the global optimum. It is thus not neces
sary to solve the 2-way partitioning exactly, but one can use a cost based heuristic
like the following one. A set of units U can be bisected by sequentially allocating
a unitu to one of both partitions such that the cost associated with the partial
allocation is minimal. The assignment of a unit to a machine partition is never
undone; no backtracking is performed.

An efficient algorithm is based on the following observation. Suppose that V =
UqEQ V(q) is a set of t units which are already allocated. For both cost functions
Ck(k = 1,2) it is possible to define a partial cost function PCk with the properties

PCk(m,U) = Ck(m)
Va C Vb:::} PCk(m, Va)::; PCk(m, Vb)

An example is :

L: .lii + max ,ljif).ji

lLiEV(q) ui E V(q)

Uj E A(Ui) n V(q)

www.manaraa.com

LOAD BALANCING GRID-ORIENTED APPLICA nONS 205

Letu be a unit that is not yet allocated. It is now possible to evaluate the costs
associated with both possible allocations of u in an incremental way. For example,
PC z can be written for bi-partitioning as :

with

PC - (C(k) C(k))
'2 - max calc + comm

k=1,2

C~:]c = 2:: Ai;
tLiEV(qj

C(k) = max A J·,6. J·,· comm
Ui E V(q)

Uj E A(Ui) n V(q)

Given the costs associated with partial allocation Vi-I, the costs for Vi = Vi-l U
{Ui} when Ui is allocated to partition I E {l, 2} can be calculated as :

if k = I then
C (k) (V·) - C(k) IV') + ,\. ..

calc t - calc\. t-l ' "

dilnm(Vi) = max{dilnm(Vi-d,max . A(')n(v. \V(k) Aji}
uJE u, 1-1 i-l

else

C (k) (V·) - C(k) (V,)
calc t - calc ,-1

d~lnm(Vi) = max{d~lnm(Vi-d,max .,(k) . A()Aij}
UJEYi_l,u,E U J

end if

Such heuristics yield solutions of which the practical quality is limited by the
accuracy of the cost function and the minimisation technique. The solution was
ameliorated by applying an iterative improvement technique, consisting of a num
ber of steps of the Metropolis algorithm [7] [9].

5.2. NUMERICAL EXPERIMENTS

A software tool LOCO [9] [11] has been developed that assists the execution of data
parallel programs. LOCO allows any problem data structure, but the application
has to define the units and the UIG for each phase. It schedules all calculations,
communication and load balancing. Several mapping algorithms have been incor
porated into this tool. In order to compare them, a model problem was solved
using LOCO.

Consider the parabolic partial differential equation defined for x E [0,1] and
tE[O,oo):

au(x, t) a 2u(x, t)
at =Q ax2 u(O,t)=O;u(l,t)=O;u(x,O)=l

This equation can be discretised in time using an explicit linear one-step method
(forward Euler), and in space with finite differences. Let there be n equidistant

www.manaraa.com

206 D. ROOSE ET AL.

points in the interior of [0,1]' separated by a distance h = n!l' If the time step is

chosen as k = 3h2 < h22 (stability condition) the explicit method is : a a .

which requires 3 floating point operations for each interior point at each time level.
A data parallel algorithm is obtained by partitioning the set of n discretisation

points. Suppose there are P processors and B . P units. In order to experiment
with different load balances, the number of consecutive interior points ni assigned
to each unit is determined by

n 20'. BP
ni·- lBP(l+ BP(z-T))J i>O

no .- n- Eni
;>0

in which 0' E (-1, + 1) determines the variation in block sizes. Note that for this
special way of partitioning an almost perfect load balance is possible when B is
even, by assigning blocks i and BP - i to the same processor. Each time step
corresponds to a phase. The calculation that must be applied to each unit consists
of updating the values in all its points. The data exchange consists of sending the
value in the points on either side of each interval. The unit interconnection graph
has the topology of a chain.

While for a one-dimensional problem partitioning is easier than for the two
dimensional case, the mapping problem has the same complexity. The amount of
computation per discretisation point is however relatively small.

Let tjphase denote the time needed by processor qj to complete a phase, and
t/a1c the calculation time for unit Ui. The total time spent in the phase is :

T(P, n) = E t/hase

qjEQ

The calculation load balance is defined by :

" t· calc A(P n) = ~uiEU ,
, p. "t·rolc max qJ E Q ~Ui EUj ,

The effectivity is the fraction of time spent in the actual calculation :

" t· ca1c

a(P, n) = ~~(~, ~)

It is evident that a ~ A. The difference is due to scheduling and communication
overhead The parallel efficiency

(. T(l,n)
Ep P, n) = p. T(P, n)

a(P, n)
a(l,n)

www.manaraa.com

LOAD BALANCING GRID-ORIENTED APPUCA nONS

and the scaled parallel efficiency

T(1.n)
Es(P, n) = T(P, p. n)

a(P,P·n) = --'--_"""':'"
a(l, n)

207

indicate the amount of parallelism in the program. They are related by 0 <
Ep(P, n) ::; Es(P, n) ::; 1.

5.3. COMPARISON OF MAPPING ALGORITHMS

The test problem was run on an iPSC/2 hypercube using different mapping al
gorithms for global optimisation. We used n = 30000 interior points and P = 8
processors, and a variable number of blocks per processor B = 1,2,4. In each data
exchange 1 double precision number must be sent (A;j ~ 350/-Ls). For each grid
point the calculation requires 3 floating point operations (Ai; ~ jp 17 /-Ls).

First the perfectly balanced case was studied with exact mapping (cost function
C2 , branch-and-bound) in order to estimate the overhead encurred by using LOCO
and the delay due to communication. This was compared with a non-balanced
partitioning (0" = 0.4).

B=1 B = 2 B =4
a(%)(O" = 0) 85 81 74

a(%)(O" = 0.4) 72 81 74

Both the overhead and the communication delay increase as the number of
blocks is augmented, and constitute a. significant percentage of the total time. Be
cause of the special kind of partitioning, the optimal assignment is only imbalanced
in case B = l.

We now consider the total cost, load balance and effectivity that were obtained
with recursive bisection for cost functions C1 and C2 (RBI and RB2), the evolution
algorithm [23J (EVOL) and their counterparts with iterative improvement (RBft,
RBI2 , EVOLJ).

a = 0.4 B = 1 I B = 2
i

B = 4 a\ C1 C2 A a I C1 C2 A a C1 C2 A

RBI 122 123 77 67 101 102 93 7,5 95 98 99 74
RBll 122 123 77 67 96 98 98 81 94 97 99 72
RB2 122 123 77 67 101 102 93 75 95 98 99 73 '
RBI2 122 123 77 68 96 98 98 81 94 97 99

~ EVOL 122 123 77 i'1 136 138 69 60 124 127 76
EVOLJ 141 142 77 60 103 106 91 76 97 99 96 70

For the case B = 1 all methods succeed in finding a I-to-l assignment of units to
processors. These assignments usually have a worse effectivity than for the optimal
assignment (a = 72%) because the mapping algorithms fail to find the optimal
allocation with respect to communication. For B = 2 and B = 4 all methods

www.manaraa.com

208 D. ROOSE ET AL.

yield a reasonable assignment with an effectivity close to the optimal one, except
EVa Land EVa LI. Due to their stochastic nature the latter sometimes find a
good assignment, and sometimes don't. Iterative improvement always is worth
while, although it is time consuming for large problems. Iterative improvement of
a solution obtained by EVa L takes longer because this starting solution tends to
be worse.

For a problem of fixed size n = 30000, partitioned unevenly (0' = 0.4) in twice as
much blocks as there are processors (B = 2), the parallel efficiency was measured
with P = 1, 2, 4, 8 and 16 processors. Fig. 6 shows how the efficiency degrades as
P increases. This is due to the increasing importance of communication, difficulty
of mapping, and overhead.

In Fig. 7 the scaled efficiency is shown for the case of fixed average block size
nj BP = 15000. In this case the relative importance of calculation and computa
tion is constant, thus giving a more realistic impression of the scalability of the
algorithm. The deterioration of is with increasing machine size is much less severe.

5.4. LOCAL MAPPING

The time invested in the calculation of a new allocation can be limited by resorting
to non-global optimisation. In this case load is redistributed only within certain
processor subsets.

Some experiments for the hypercube case are summarised in the following table.
Let I be the hypercube dimension. The scaled efficiency was determined on the
iPSCj2 for the case of two blocks per processor (B = 2) with nj BP = 15000. The
load balancing strategy consisted of two steps. In a first step blocks of unequal
size were generated (0' = 0.4) and distributed among the processors assuming that
their calculation load is equal (communication costs were ignored) using RB h. In
a second step local remapping was done with RBh for g-dimensional sub cubes
(g < l).

RBh, p
i 8 (%) 1 2 4 8 16

0 100 99.2 94.0 90.0 88.0
1 99.1 99.2 97.5 95.5

9 2 99.0 96.7 96.7
3 96.4 96.5
4 95.9

Although the quality of the achievable optimal mapping increases with g, the
optimisation problem becomes more difficult, and the heuristic may perform worse.
Therefore global optimisation is not always the best.

www.manaraa.com

LOAD BALANCING GRID-ORIENTED APPLICATIONS

IOO~
80

60
Ep (%)

40

20

0

100

80

60
Es (%)

40

20

0

---------------.

1 2 4

Number of Processors P

Fig. 6. Parallel efficiency tp

EVOLJ

8 16

~--~

EVOLJ

16

Number of Processors P

Fig. 7. Scaled efficiency t,

6. Partitioning and Mapping with Genetic Algorithms

6.1. INTRODUCTION

209

Genetic algorithms are robust optimisation methods, based on an analogy with the
way individuals in nature adapt to their environment. Since their introduction by
John Holland [19], they have been used successfully in a wide range of applications
(an extensive overview can be found in [16]).

In these algorithms, one lets evolve a population of individuals represented
by chromosomes. In every generation. the fitness of the individuals is evaluated
according to a given criterion. To produce the next generation. parents are selected
in the population to mate and produce offspring. The probability for an individual
to be selected for mating is proportional to its fitness. In this way. the properties
of above average individuals are rapidly distributed among the members of the

www.manaraa.com

210 D. ROOSE ET AL.

population while the properties of the inferior individuals vanish in the population.

In genetic algorithms, the chromosomes are normally bit strings. In order to use
a genetic algorithm (GA) for the solution of an optimisation problem, on must be
able to code all the possible solutions of the problem as bit strings. In most cases.
fixed length bit strings are the most obvious choice but for some problems the use
of variable length bit strings can be advantageous.

The children are produced by combining the chromosomes of their parents,
using a number of operators inspired by phenomena found in nature. The most
frequently used operators are crossover and mutation. The crossover operator takes
two chromosomes and creates a new chromosome by taking the bits of the first
chromosome at some locations and the bits of the second chromosome at the
remaining locations. The mutation operator takes one chromosome and changes
each bit with a given probability PM.

If we represent t he population at generation t (t = 0, 1,2, ...) by P(t), we can
formulate the basic GA as follows:

create the initial population P(t = 0) with N individuals;
while not stop do

evaluate the fitness of the individuals of the population;
create the individuals of the population P(t + 1) :
repeat

select two parents in P{t) with the selection probability of an
individual being proportional to its fitness;

prod uce (the chromosomes of) the children, either by applying
crossover between the chromosomes of the parents with pro
bability Pc or by copying them with probability 1 - Pc ;

apply mutation to the chromosomes of the children with pro
bability PM ;

add t he children to P(t + 1).
until population P(t + 1) is complete;
set t = t + 1

end while

6.2. ApPLICATION OF THE GA TO THE PARTITIONING AND MAPPING PROBLEM

In order to use a GA, the user must supply a suitable coding for his problem and
a function that attributes a measure of fitness to a given solution. When the GA
is applied to the partitioning and mapping problem, a given cost function must be
minimised. so the lower the value of the cost function for an individual. the higher
its fitness.

Here, we describe experiments based on the cost function, elaborated by R. Williams

www.manaraa.com

LOAD BALANCING GRID-ORIENTED APPLICATIONS 211

in [31] :

d-l
p2 2 P -;r

H = NZ L N q + {l (N) L 1 - ~ij
qEQ Uj-Ui

where Nq in the first summation is defined as

N q = L ~(q,m(ui)) = #U('l), q E Q
u,EU

and where the second summation must be performed over all couples of interacting
units.

The constant {l determines the relative importance of the costs of calculation
and communication : the greater Il, the more important the communication as
compared with the calculations.

The constant d is the dimension of the grid from which the unit interaction
graph was derived. This function is relatively simple while at the same time it
captures the relevant aspects of the problem. Moreover, the form of the function
is such that the GA converges relatively fast.

In Fig. 8, the results for a 'typical' run of the genetic algorithm are shown. The
problem consisted in the mapping of 64 units, interconnected in an 8 by 8 regular
grid, on .1, processors. The factor Il was chosen to be equal to 0.5. For this problem
and for {l = 0.5, the value of the cost function for the optimal mapping is equal to
8.0.

A population of 64 individuals was used, the crossover rate Pc was taken to
be 1.0 and the mutation probability PM was set to 0.01. The genetic algorithm
was performed 10 times. The results shown are these of the run that produced
the median of the end results. In the figure t he cost function of the worst indi
vidual of the population, the mean cost function among all the individuals of the
population and the cost function for the best individual are plotted against the
generation number. It can be seen that after 9.5 generations, the whole population
has converged to a solution. The solution, however, is not optimal. This premature
convergence to a local minimum is an important problem and the improvement of
the GA to avoid this is currently an important research topic (see e.g. [.5]).

6.3. IMPROVEMENT OF THE GA BY USING HEURISTICS

It is possible to speed up the convergence substantially by heuristically improving
the quality of the individuals after their creation and before they produce offspring
(see e.g. [18]).

For the same problem as mentioned above. the GA without improvement of
the individuals is compared with the GA with improvement. Two heuristics were
used:

www.manaraa.com

212

H

II

D. ROOSE ET AL.

28,---------------------------------~

26 i\
.\

24

22

20

18

16

14

12

10

8

6
0

- - - - - . Worst individual
Mean population value

---- Best individual

........ -.-.-.-

10 20 30 40 50 60 70 80 90 100

Generation no.

Fig. 8. Minimal, maximal and mean value of the cost function

24

22

20

18

16

14

12

10

, \.. \ ,
" ,~

\
\ ,

"-

- - - - No optimisations
- - - - - - - Balancing

Remapping of isolated units
---- Both optimisations

o 10 20 :30 40 50 60 70 80 90 100

Generation no.

Fig. 9. Comparison of the GA with and without heuristics

www.manaraa.com

LOAD BALANC1NG GRID-ORIENTED APPUCA TIONS 213

l. a heuristic that balances the number of units among the processors. This
heuristic assumes that the number of processors is a power of 2, say P = 2P •

The processor numbers are then bit strings of length p. The heuristic is then
as follows:

for i is 0 to P - 1 do
for each pair of processors whose numbers differ in the ith bit do

shift from the processor with the greater number of units half
of the surplus of units to the other processor

end for
end for

When the heuristic is performed, the units are balanced among the processors
but neighbouring units will in general be mapped on different processors.

2. a heuristic that remaps isolated units, i.e. units for which the connected units
are all mapped on another processor.

In Fig. 9, results are given when no heuristic is used, when only one of the
heuristics is used and when both heuristics are used. In each case, the value of the
cost function for the best individual in the population is plotted against the gener
ation number. It can be seen that the algorithm converges faster (i.e. needs fewer
generations) and finds better solutions when the heuristics are used. Of course
when the heuristics are used, calculating a new generation involves more work but
nevertheless the execution time of the algorithm is in most cases shorter. This is
illustrated in the following table where the calculation times on a DECstation 3100
are reported.

Heuristics used in the GA Execution time
No heuristics 49.297 sec
Balancing 49.843 sec
Remapping of isolated units 36.072 sec
Both heuristics 45.091 sec

6.4. PARALLELISATION OF THE GA

When a genetic algorithm is used to balance the load of a parallel computer, it
is essential that it is parallelised because otherwise the load balancer becomes
a bottleneck when a large number of processors is used. Besides, as the genetic
algorithm is rather time consuming, even for other applications, the use of a parallel
genetic algorithm can be advantageous.

The GA is inherently parallel in that the individuals of the population coexist
in parallel and that couples of individuals concurrently mate and produce children,
so it is logical to distribute the individuals of a population among the processors.

In the traditional GA, a panmictic population [17] is used, i.e. during repro
duction each individual may choose whichever individual from the population as

www.manaraa.com

214 D. ROOSE ET AL.

a mate. This means that each individual must 'know' all the other individuals
of the population. More specifically, each individual must know the fitness of the
other individuals to be able to make a choice among them and consequently must
know the chromosome of the individual it selected as mate. This need for global
knowledge inhibits efficient parallelisation. Therefore. a number of modifications
have been proposed which all have in common that the number of potential mates
of an individual is restricted.

In the island models a number of isolated populations are kept at the same
time. Each population is panrnictic, so that individuals can only mate within their
population. The isolated populations may communicate by migration, viz. from
time to time individuals move from one population to another. It is possible to
define for each population a 'neighbourhood', in such a way that an individual can
only migrate to neighbouring populations.

In the neighbourhood models [17] the total population is conceived as evolving
in a continuous inhabited area. Each individual moves in a bounded region and
may interact only with those individuals living in the immediate locality, referred
to as its neighbourhood. This model is highly distributed and fully exploits the
available parallelism of the GA.

Acknowledgements

This text presents research results of the Belgian Incentive Program 'Information
Technology' - Computer Science of the Future, and the Belgian programme on
Interuniversitary Poles of Attraction, initiated by the Belgian State .- Prime Min
ister's Service - Science Policy Office. The scientific responsibility is assumed by
its authors. This research is supported also by Intel Supercomputer Systems Divi
sion, Beaverton, U.S.A. ('University Partners Program'), and the ESPRIT Parallel
Computing Action of the E.C. (project 4065). D. Roose acknowledges the support
of the A. von Humboldt Stiftung ; part of this work has been done during his
stay as a Humboldt Research Fellow at the G.M.D., Sankt Augustin. Germany. R.
Van Driessche is Research Assistant of the National Fund for Scientific Research
(Belgium).

References

1. S. B. Baden. Programming abstractions for dynamically partitioning and coordinating
localized scientific calculations running on multiprocessors. SIAM J. Sci. Stat. Comput.,
12(1):145-157, 1991.

2. L. Beernaert, D. Roose. R. Struijs. and H. Deconinck. A multi grid solver for the Euler
equations on distributed memory parallel computers. IMA CS J . ..J.ppl. Num. ,Math., 7:379-
393. 1991.

.3. :"1.J. Berger. Adaptive mesh refinement for parallel processors. In G. Rodrigue. editor.
Parallel Processing for Scientific Computing, pages 182-194. SIAM, Philadelphia, 1989.

4. J .E. Boillat. Load balancing and Poisson equation in a graph. Concurrency: Practice and
Experience. 4(2):289-313. 1990.

www.manaraa.com

LOAD BALANCING GRID-ORIENTED APPLICATIONS 215

5. L. Booker. Improving search in genetic algorithms. In L. Davis, editor, Genetic Algorithms
and Simulated Annealing, Research Notes in Artificial Intelligence, pages 61-73. Pitman,
London, 1987.

6. A. Brandt. Multigrid techniques : Guide with applications to fluid dynamics. GMD Stu
dien 85, GMD, St. Augustin, 1984.

7. N. P. Chrisochoides, E. N. Houstis, and C. E. Houstis. Geometry based mapping strategies
for PDE computations. In Proceedings of the ACM Supercomputing Conference '91, pages
115-127, 1991.

8. G. Cybenko. Dynamic load balancing for distributed memory multiprocessors. J. Parallel
Distrib. Comput., 7:279-301, 1989.

9. 1. De Keyser and D. Roose. Load balancing data-parallel programs on distributed memory
computers. Report TW 162, K. U. L"euven, Leuven, Belgium, Dec 1991.

10. 1. De Keyser and D. Roose. Multigrid with solution-adaptive irregular grids on distributed
memory computers. In G.R. Joubert, 0.1. Evans, and H. Liddell, editors, Proceedings of
the International Conference on Parallel Computing '91. Elsevier Science Publishers, B.V.,
1991. to be published.

11. 1. De Keyser and D. Roose. A software tool for load balanced adaptive multiple grids on
distributed memory computers. In Proceedings of the 6th Distributed Memory Computing
Conference, pages 122-128. IEEE Computer Society Press, 1991.

12. C. Farhat. A simple and efficient automatic FEM domain decomposer. Computers and
Structures, 28:579-602, 1988.

13. G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker. Solving Problems on
Concurrent Processors. Prentice-Hall, Englewood-Cliffs N.J., 1988.

14. G. C. Fox. A graphical approach to load balancing and sparse matrix vector multiplication on
the hypercube. In M. Schultz, editor, Numerical Algorithms for Modern Parallel Computer
Architectures, pages 37-61. Springer Verlag, 1988.

15. G. C. Fox. A review of automatic load balancing and decomposition methods for the hyper
cube. In M. Schultz, editor, Numerical Algorithms for Modern Parallel Computer Architec
tures, pages 63-76. Springer Verlag, 1988.

16. D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley Publishing Company, Inc., Reading, Massachusetts, 1989.

17. M. Gorges-Schleuter. Explicit parallelism of genetic algorithms through population struc
tures. In Hans-Paul Schwefel and Reinhard Minner, editors, Parallel Problem Solving from
Nature, number 496 in LNCS, pages 150-159. Springer-Verlag, Berlin, 1990.

18. J. J. Grefenstette. Incorporating problem specific knowledge into genetic algorithms. In
L. Davis, editor, Genetic Algorithms and Simulated Annealing, Research Notes in Artificial
Intelligence, pages 42-60. Pitman, London, 1987.

19. J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press,
Ann Arbor, 1975.

20. B. W. Kernighan and S. Lin. An effective heuristic procedure for partitioning graphs. The
Bell System Technical Journal, pages 291-308, 1970.

21. M.-H. Lallemand, H. Steve, and Dervieux A. Unstructured multigridding by volume ag
glomeration. Rapports de Recherche 1224, INRIA, Sophia Antipolis, May 1990.

22. S. McCormick. Multilevel adaptive methods for partial differential equations. SIAM, Philadel
phia, 1989.

23. H. Miihlenbein, M. Gorges-Schleuter, and O. Kramer. Evolution algorithms in combinat!Jrial
optimization. Parallel Computing, 7:65-85, 1988.

24. A. Pothen, H. D. Simon, and K.-P. Liou. Partitioning sparse matrices with eigenvectors of
graphs. SIAM J. Matrix Anal. Appl, 11(3}:430-452, 1990.

25. D. Quinlan and M. Lemke. Parallel local refinement based on hierarchical and asynchronous
fast adaptive composite methods for distributed architectures. In Proceedings of the Third
European Conference on Multigrid Methods. GMD, Sankt Augustin, 1991. -

26. P. Sadayappan and F. Ercal. Nearest-neighbor mapping of finite-element graphs onto pro
cessor meshes. IEEE Transactions on Computers, C-36(l2):1408-1424, 1987.

27. P. Sadayappan, F. Ercal, and 1. Ramanujam. Cluster partitioning approaches to mapping

www.manaraa.com

216 D. ROOSE ET AL.

parallel programs onto a hypercube. Parallel Computing, 13(1):1-16, 1990.
28. P. Sadayappan, F. Ercal, and J. Ramanujam. Parallel graph partitioning on a hypercube.

In J. Gustafson, editor, Proceedings of the 4th Distributed Memory Computing Conference,
pages 67-70. Golden Gate Enterprise, CA, 1990.

29. A. Schiiller and G. Lonsdale. Parallel and vector aspects of a. multigrid Navier-Stokes solver.
SIAM J. Sci. Stat. Comp., 1991. to be published.

30. H.T.M. Van der Maarel. Adaptive multigrid for the steady Euler equa.tions. In S. McCormick,
editor, Proceeding' of the 5th Copper Mountain Conference on Multigrid methods, 1991. to
be published.

31. R. D. Williams. Performance of dynamic load balancing algorithms for unstructured mesh
calculations. Concurrency: Practice and Experience, 3:457-481, 1991.

32. R.D. Williams. Supersonic fluid flow in pa.rallel with an unstructured mesh. Concurrency:
Practice and Experience, 1(1):51-62, 1989.

www.manaraa.com

STRATEGIC DECISION ANALYSIS AND GROUP DECISION SUPPORT

SIMON FRENCH

School o/Computer Studies,
University 0/ Leeds.
Leeds. LS2 9n', UK

Abstract. The context of group decision support within an organisation is discussed. In particular, the
paper focuses on the needs of senior management teams facing long-term complex strategic issues. The
use of facilitated workshops is discussed, particularly the fonnat IISed by decision conferencing.
Advances in computing power and displays have been central to the development of decision
conferencing, because they allow the results of a decision analysis· to be generated interactively and
explored graphically. Some applications are noted to strategic decision making both within and outside
the computer industry

Keywords. Computer supported co-operative work: (CSCW) - Decision conferencing - Facilitated
Workshops - Group decision support systems (GDSS) - Groupware - Strategic decision analysis

1. Introduction

Some four years ago I was appointed to the Chair of Operational Research and
Infonnation Systems at the University of Leeds. Given my meagre background in
OR. I would have been fortunate to have been appointed to a chair in OR alone.
Given my nonexistent background in infonnation systems. to attach responsibility for
that to my appointtnent was a considerable act of optimism on the University's part.
Consequently, I have spent much of the past four years 'coming up to speed' in
infonnation systems theory. In many ways, this has not been too onerous a task: OR
and infonnation systems engineering have much in common. However, I have had
much difficulty gaining any command of information systems terminology,
particularly in the field of decision support.

Silver (1991) notes that historically a decision support system (DSS) has generally
been defined as "a computer-based infonnation system that supports people engaged
in decision making activities", He goes on to give his own broader definition that a
DSS "is a computer-based infonnation system that affects or is intended to affect
how people make decisions", Lewis (1991) surveys 39 commonly used introductory
texts on infonnation systems and found that three quarters relate their definition of
infonnation or infonnation systems to decision making. Taking either of Silver's
definitions. the study of DSSs would thus encompass the whole of the field of
infonnation systems,

217

P. Dewilde and J. Vandewalle (eds.), Computer Systems and Software Engineering, 217-230.
il:) 1992 Kluwer Academic Publishers.

www.manaraa.com

218 S.FRENCH

Part of the problem is that. unlike many other academic disciplines, computer science
and information systems theory seek to attach concepts to products, selVices and
systems that someone is trying or will try to sell. Thus the clarity of academic
definitions are soon sullied by their misuse in advertising and marketing. A
spreadsheet is thought to sell better when maJteted as a personal decision support
system. You can probably only sell a database to the data processing manager, but
call it an executive in/ormation system (EIS) and your potential customer base is
anyone in management. At the moment, group decision support system (GDSS)
seems to roll off the marketing people's tongues with some ease. If they can get the
word strategic in, then the advertising blurb will be a winner!

My original intention had been to review different approaches to GDSS and their use
in dealing with complex strategic issues, giving particular emphasis on decision
conierencing. But with so many methodologies and software systems claiming to be
GDSSs or, at least. components of GDSSs, the task has been beyond me. Instead I
have chosen simply to concentrate on decision conierencing, but in doing so I have
set its use within an organisational context which I hope may inform discussion of
other approaches to group decision support (GDS).

Thus in the next section, I present a perspective of the organisational context of
strategic decision making which derives from the work of Elliot Jaques. This
perspective enables me to articulate some comments on the most appropriate places
at which various types of DSS can help an organisation's decision making. In later
sections I review approaches to decision analysis and the benefits that the growth in
readily available computing power has brought. With this background, the decision
conierencing approach to GDS is described and its applications reviewed.

2. Time-Span of Discretion and Strategic Decision Making

Group decision making, it seems to me, always takes place within the context of an
organisation. It may be the trivial case in which the group itself is the organisation,
such as a family deciding upon where to take their holidays. Or the group may be a
committee within a university, a council of ministers within a government, a
management team within a business, the board of directors in a multinational, or any
one of many other examples. For definiteness, I shall set most of the following
within a business context, but with suitable changes of vocabulary it applies to most.
if not all organisations.

Over the past four decades, Elliot Jaques has developed an approach to the theory of
organisations based on what he terms the time-span of discretion: see e.g. Jaques
(1989). Figure I shows an example of a hierarchy that might form the basis of the
organisation of a small firm. I aques argues that the tasks and decision making
undertaken at different levels in an organisation may be characterised by the time
span of discretion required. Directors may be typically working on strategies that
will bear fruit in a 2-5 year timeframe. Their 'vision' is focused on this period, and
they avoid dealing directly with the day-to-day operation of the firm. Line
management focus their attention on a shorter timeframe. say 6 months to 2 years;

www.manaraa.com

STRATEGIC DECISION ANALYSIS AND GROUP DECISION SUPPORT 219

while the wolkers would focus their attention on the very short tenn, maybe 0-6
months. TIlere are a number of points which should be made immediately.

FiIStly, there may be more or less than three levels in the hierarchy: three are shown
here only as an example. Secondly, the time-span of discretion at any particular level
depends on the organisation's culture. In some, the wolkel'S may only have a time
span of discretion of perhaps a week; in othel'S. maybe a year. Thirdly, the maximum
time-span of discretion will vary between organisations. A small company may look
at most five yeal'S ahead; a multinational, seveI3l decades. Fourthly, the level to
which a people may (usefully) rise in an organisation is limited by their ability to
envisage the future. I shall call this the limits of their vision. If someone is able only
think up to two yeal'S ahead. then in the example of Figure 1 he or she should not rise
above line management.

Of course, this is not to claim that people do rise no higher than the limits set by their
vision. Jaques argues persuasively that organisations are best able to achieve their
ends when accountability and responsibility flow through a hierarchy such as that in
Figure 1. He tenns such a structure an accountability hierarchy (AR). When
members of the organisation wolk at levels with time-span of discretion less than or
equal to the limits of their vision. he tenns the AH requisite. Building upon this,
Jaques (1989) goes on to develop a normative theory of organisations.

Directors
TIme-span of discretion
2-Syr.s !

Une Management

TIme-span of discretion
6mths-2yr.s

Workers
TIme-span of discretion
0-6mths

! !

I

Figure 1: An organisational hierarchy for a small business

!

! !

I

www.manaraa.com

220 S. FRENCH

Descriptively, organisations may not match Jaques' model. People may have risen
higher than their vision should allow. Matrix organisations (see, e.g., Handy, 1985)
have no clear AH. At least they have no single hierarchy structuring accountability
and responsibility within them. But each project team or task group within a matrix
organisation may structure its worldng by means of an AH. Whatever the case. I
shall take Jaques' conception of AHs to prescribe an. if not the. ideal structure for an
organisation and set my discussion accordingly.

It is important to consider the dynamics of organisations: to think of organisations as
processes as well as structures. Figure 2 suggests. at the level of gross generalisation,
how the tasks undertaken at any particular level in an AH varies over time. Figure 3
sets this within the AH of Figure 1: but first concentrate on Figure 2. In the normal
course of events, work. consists of communicating and implementing strategy already
decided upon, together with information gathering, monitoring and evaluating the
performance of the current strategy. As time passes, the need for revision of the
strategy will grow, maybe because of decisions taken at a higher level in the
hierarchy. This will lead to a growth in the information gathering to investigate
possible alternative strategies, and a declining emphasis on communication and
implementation. When enough information has been gathered or when external
factors dictate, there follows a short period of intense decision making, during which
a new strategy is adopted. Next there follows a period in which the emphasis is on
communicating and implementing this strategy; and the cycle repeats itself.

Strategic
decision
making

Strategic
decision
making

----il>
Time

Figure 2: Clanges in mode of work over time at a level in a hierarchy

www.manaraa.com

STRATEGIC DECISION ANALYSIS AND GROUP DECISION SUPPORT 221

Embedding this view of the work at a level within an AH gives Figure 3. Note how
the processes are staggered between the levels. as the decisions taken at one level
cascade down the hierarchy, necessitating revisions of strategy at the lower levels.

Dlractors
Tme-span 01 di8cration
2-5yrs

Une Management

Time-span 01 discretion
6mths-2yrs

Workers

Tlrne-span 01 discration
0-6mths

.-.~......... 1-1
..........--.......... -
~.!' .. '-........................... , r·········~· I_J "-" -~ •.....• .-.

-~ .~.~.. ---

~--~
r··········· --J ~ -... ---.... ::t.' '"
~ .•..... - .-. ~ i.............. -........... !""' ••• ,

~-~
::.. I_J r············ l_j 1 -............. -~ ~= __-.ond~_i._i __ _

Figure 3: Olanges in mode of work over time in a hierarchy

I have used the term strategy fairly indiscriminately in the preceding paragraphs. A
strategy broadly describes a course of action extending over a period of time, with
guidance on how various contingencies are to be overcome, should they arise. It is
common to contrast strategic decisions with tactical decisions. Strategies are
contingency plans which guide the choice of appropriate actions as the future
unfolds. Tactics are the possible actions that may be taken in the face of a particular
contingency. Thus a strategy guides tactical decision making. The time-span of
discretion concept leads to a further perspective on the difference between strategy
and tactics. At any level within an AH. a strategy is broadly any policy or course of
action that will have outcomes within the time-span of discretion at that level.
Generally, tactics are actions that have their effect sooner than the lower limit of the
time-span of discretion. Subject to the guidance impliCit in a strategy, decisions on
tactics may be left to lower levels in the organisation. Thus the tactics at one level
are the strategies at lower levels.

This use. I am making, of the term strategy is very different to the conventional
wisdom of categorising decision making as strategic, tactical, or operational, and I
would not like to push my use too far. My purpose in taking the direction that I am is
to emphasise that one of the qualities that determines how a person perceives and
tackles a decision is whether its outcomes fall in his or her time-span of discretion.

www.manaraa.com

222 S.FRENCH

Whether a decision is tactical depends as much on who makes it as on what the
decision problem is. A company director would be perfectly capable of deciding
how many paper clips to order for the next month, but he would not consider it a
strategic decision. Lower in the organisation. a stationery clerK might consider such
a decision strategic and ponder some time on it

All the above ignores the fact that most organisations carry out a range of activities.
For instance, a small manufacturing firm may have activities associated with
production. marlreting, finance and R&D. Each of these areas of activity will lead
to a set of processes: see Figure 4. In a requisite organisation each 'copy of Figure 3'
within Figure 4 would correspond with a different set of branches of the AH. In a
matrix organisation. each copy would correspond to a particular task group. Note
that the time between periods of strategic decision making will vary both within an
area of activity and between areas of activity.

I RandO
Different areas of
activity in the

o~an~onr-____ IL-~====~~R~n~~======~==~~
Marketing

........ , ,................ , ,
ProdJction

............... I 1 _-..... -._-... 1 I··········

I····················] 1·······-········1

········ 1 [........................ ,J I·······

-

I
-.............
-

Figure 4: Different areas of activity within an organisation

r--

w=
f--
"'
I---

3. Setting the context of a DSS within an AH

r-
'"

f0-

I-

l-

I-

I-

This perspective, simplistic though it be, provides a frameworK for the discussion of
the appropriateness of different forms of computer-based support at different times
and different levels within a organisation: see Figure 5. fur instance, information
gathering may be supported by straightforward database systems at lower levels,
management information systems (MIS) at intermediate levels. and executive
information systems at higher levels. All communication and implementation may
be supported by computer supported co-operative work (eSeW) or groupware

www.manaraa.com

STRATEGIC DECISION ANALYSIS AND GROUP DECISION SUPPORT 223

systems. Note that CSCW should provide the medium for communication both
between different levels within an area of activity and between different areas of
activity. In particular, it seems sensible to reserve DSS to describe systems which
support the decision making phases.

Directors

TlfTle-span of discral:ion
2-5yrs

Une Management

TIme-span of discretion
6mths-2yrs

Workers

TIme-span of discretion
0-6mths

EIS GDSS

••••••• -- ,- ~ ShIogIo r············ ,- ~ ShIogIo ~ -................ - ~ -.. -...... =
~!, ' •,. ,11''*''........ -............. , __ _

MIS GlOSS

:.~... '-~ShIOgIO r············ '-~""'I """ - -
"'" -. ~ ""'" __ ,.a~i.~ __ _

AI cammunicalian and implementation
support8d by CSCW

Figure 5: Using computer-based support within an organisation

The notion of time-span of discretion suggests that there may be different needs of
computer-based support at different levels within an organisation. I doubt whether
anyone will find this remark novel in the context of those systems which support
infonnation gathering. The attribution of database systems, MIS and EIS to the
different levels in Figure 5 is entirely conventional. At the lowest levels raw or
nearly raw data is needed to guide the day-to-day operation of the organisation.
Higher up the summaries and analyses provided by an MIS are more appropriate to
the detail needed to support tasks with a longer time-span of discretion. At the
highest levels, gross summaries and comparative pictures of the organisation's
perfonnance are needed.

The ordering provided by time-span of discretion has a relationship with the
structured-unstructured task dimension introduced by Gorry and Scott Morton (1971)
or the programmed-nonprogrammed task dimension introduced earlier by Simon
(1960). The longer the time-span of discretion of a task the more unstructured it
tends to be, requiring more creativity and less programmed behaviour. The
distinctive feature of using the time-span of discretion dimension is the mapping
which Jaques suggests that it provides onto the organisational structure.

www.manaraa.com

224 S.FRENCH

Turning to the types of DSS appropriate to the different levels in the organisation.
one might make the following attributions. At the lowest levels with shon time-span
of discretion. decision making is more repetitive. structured and rule-based,
suggesting that support may be most suitably provided by an expert system (ES)
approach. Higher up the organisation. expen systems may not be appropriate,
because the longer time-span of discretion the less it is possible to apply repetitive
rules to help determine strategy. The successful applications of ESs reported in
Ignizio (1991) support this assertion, although some proponents of ESs may not
believe it

DSSs that are appropriate to time-spans of discretion of a year or two will be much
less structured that ESs. They may support individual decision makers or groups:
hence I used 'O/DSS' in Figure S. The sort of support I envisage here is that
provided by the standard OR models. such as linear programming, augmented by
systems that allow the user to express preferences and judgements. All the
interactive multi-criteria methods surveyed by Belton (1990) provide suitable
examples of appropriate DSSs.

At the top of the organisation. decisions are the least structured and have the longest
time-span of discretion. They shape the overall strategy of an organisation. Taking
decisions at this level requires much creativity and judgement, and flexible DSSs
incorporating brainstorming and similar activities are necessary. They need to help
evolve and shape judgement, especially in relation to explicit judgemental evaluation
of alternatives. Moreover, typically at this level decision making is a group activity.
Thus onsss are necessary. and ideally ones which help communication and the
creation of a shared understanding between the group members. See also Phillips
(1989). It is the support of this level of decision making activity within an
organisation that I discuss below in Section 5, and I defer further discussion until
then.

The communication and implementation activities within an organisation also need
computer-based support. There is much current in the literature shaping the CSCW
and groupware of tomorrow: see, e.g. the special issues of the International Journal
of Man-Machine Studies of February and March 1991. The only comment I would
make on CSCW is that it needs to support work at all levels in the organisation. The
different time-spans of discretion at different levels may necessitate different
interfaces at each levels to what is essentially the same system. Moreover. there is a
potential difficulty in transferring results of empirical studies obtained on the efficacy
of CSCW at one level to other levels. This will be significant for those seeking to
demonstrate the value of CSCW. While it will be relatively easy to set up
scientifically designed studies of CSCW at the lower levels, higher up the
organisation it will be more difficult: CEOs do oot have the time to play!

4. Bayesian Decision Analysis

I espouse the Bayesian approach to decision analysis which has grown from the
founding work of Ramsay(1931) and Savage(1954). fur a review of the theoretical
underpinnings of this: see French (1986). More applied reviews may be found in

www.manaraa.com

STRATEGIC DECISION ANALYSIS AND GROUP DECISION SUPPORT 225

Clemen (1991). French (1989). Von Winterfeldt and Edwards (1986). and Watson
and Buede (1987).

I mention the founding work. of Savage because it is interesting to make an aside on
the parallels between his small worlds concept and Jaques' time-span of discretion.
Savage argued that an analysis is never carried out in the context of a full model of
the real world. but rather a small world model. To build this small world the decision
makers (OMs) abstract from the real world those aspects that affect their choice and
ignore all aspects that are irrelevant to it Phillips (1984) has developed this idea.
though not explicitly from a starting point of Savage's work. into a theory of
requisite modelling. In this Phillips describes the manner in which the analysis
iterates through stages of more and more detailed model building until all that is
(seems?) relevant to the decision is included. Thus he describes the process of
building a small world.

This adds another perspective to Jaques' use of the time-span of discretion to
characterise the mode of working at different levels in an organisation. For example.
senior management need models from which they can omit or. rather. not build in
particular details. thus capturing the spirit of remaries such as: "I don't know the
details of how we will solve this one. but I am sure that Joe down in the production
department will be able to. So it needn't detain us." Tactical decisions may be
ignored in the model. because they relate to shorter time-spans of discretion
appropriate to lower levels in the organisation. The higher one goes in an
organisation the more gross the detail needed in the modelling. The small worlds of
senior management are 'broad-brush'. long-term, global pictures. whereas lower
down an organisation more detailed local small worlds are required. These remark.s
further emphasise the need for DSSs to be tailored to the level in the organisation at
which they will be used. The detail included in the models they use must be
appropriate to the mode of working and time-span of discretion of their users.

It should be emphasised that (Bayesian) decision analysis is normative. It suggests
how a decision should be made. not how an unaided decision is made. It is
prescriptive. not descriptive. None the less. it is not dictatorial. Decision analysis
helps the decision makers understand the opportunities and the choice before them.
Enlightened by this understanding, they make the decision. See. e.g .• Bell. Raiffa
and Tversky (1988), French (1986. 1989). and Phillips (1984).

To provide this understanding. the assumptions underlying a decision model must be
unambiguous. explicit and justified. For me, this means that 1 cannot recommend the
adoption of several non-Bayesian families of models proposed in the literature: see
French (1986). As you may imagine. however. there is far from universal agreement
on what assumptions may be justified and hence which models may be used. Thus
designers of DSSs would be well advised to survey the decision theory literature
before incorporating a particular family of models into their system. I am afraid that
information system theorists have an track record of re-inventing wheels. the
roundness of which have been well investigated in other disciplines and found
wanting.

www.manaraa.com

226 S.FRENCH

Bayesian decision analysis has been with us in principle for some four decades, but
its application within OSSs extends back over a far shorter period. Although the
Bayesian decision models seem to have a simple structure, such as that of decision
trees, and the calculations required by their analysis require little more than the four
arithmetic operations, the number of computations necessary for realistically sized
problems can be enormous. Thus analyses in the 1960s and 19705 required a
mainframe. or at least a minicomputer. 'They were done • offtine' by consultants in
major studies undertaken for an organisation. While the reports produced doubtless
affected the organisation's high level decision making, they cannot really be taken to
have constituted a OSS. Over the past decade, the growth of readily available
microcomputing has changed this. Modem PCs are well able to support decision
analyses (although full sensitivity analyses may require more power. perhaps that
available through parallel processing environments hosted within a PC; Rios Insua
and French, 1991). Moreover. graphical interfaces allow the results to be presented
to and explored by the OMs in an informative way. Thus Bayesian methods are now
providing the kernels of many OSSs. Clemen (1991) surveys some of the more
common packages.

5. Facilitated Workshops and Decision Conferencing

The methods of GOSS which I wish to discuss further support strategic decision
making at the highest levels within an organisation: see Figure 6. 'They primarily
deal with matters requiring time-spans of discretion of more than a year. In other
words, they are appropriate when substantial issues arise which will necessitate
consideration of the organisation's overall strategy. Note the ellipse in Figure 6. It
makes one point not made earlier. Any OSS supports elements of the information
gathering prior to the decision and elements of the communication and
implementation activities subsequent to the decision.

It has become the practice in some organisations, when complex strategic problems
are faced, for an appropriate management team to meet together for a day or more to
discuss and explore the issues (Eden and Radford. 1990). Often the teams are aided
at these meetings by a facilitator. A facilitator is skilled in the process of group
discussion, but seldom does he or she have any expertise in the context of the issues
at hand, and even more seldom would he or she use such expertise in the discussion.
The facilitator's role is to smooth the team's work. to help the process and make the
team more productive. more creative. The content of the discussion comes entirely
from the management team themselves. They are the specialists in their
organisation's business. No one can know it as well as they do. Such meetings are
known as facilitated workshops or as decision conferences, although the latter tenn
was until recently reserved for the style of facilitated workshop developed by Cam
Peterson, Larry Phillips and their colleagues.

More and more these, decision conferences are being supported by computer-based
tools. Using a projected word processor to capture a mission statement or action list
is very effective. Seeing the words appear and be edited on the screen seems to
provide a much stronger focus for discussion than tlipcharts and whiteboards can
provide. Cognitive modelling techniques (Rosenhead, 1989), now embodied in the

www.manaraa.com

STRATEGIC DECISION ANALYSIS AND GROUP DECISION SUPPORT 227

COPE software package, help the OMs explore the issues and concerns which
brought them together. Decision analytic software enables the OMs to investigate the
implications of their beliefs and their preferences. More importantly, the models are
implemented in such a way that variations in the input judgements can be explored
easily. Thus the team can discover both the importance of differences in opinions
between the team members and the sensitivity of their conclusions to these
differences and to those judgements of which they are most unsure.

Directors

TIm8-5p8Il cI discretion
2-5yrs

Une Management

Time-span cI discretion
6mhs-2yrs

Workers

TIme-span cI discretion
0-6mths

Dec:ision making aupportIMI
~ by decision 00I1fanN1CiI19

-- ~ ----
~.:: ;:tJ~~: ~.J~ __

--_--1 :=: r~··········~? J:=: r:.:::::.··········· . -...... -- - ----

:.~......... -=J:=:o r················· --=1 == 1----- -.......... :-,.....~ -............................. ~ ---

Figure 6: .Decision conferencing provides GDSS for higher levels within an organisation

A decision conference is generally a two-day event. Other timescales are possible;
but the inclusion of a night is more or less essential. In the evening the OMs are able
to relax together and refiect on the progress and discussion so far. This refiection,
together with the distance from the previous day's deliberations that a night's sleep
brings, helps the team acquire a more mature perspective on the issues that concern
them. Without the night's break the team may have 'second thoughts' soon after the
conference ends, perhaps on the journey home, and much of the value of the event
will be dissipated as their commitment to its conclusions evaporates.

The entire management team take part in the conference, which concentrates entirely
upon the strategic issues that led to it being called. There are no time-outs to
consider peripheral matters 'while the team are together'. For that reason it is
sensible to hold a decision conference away from the team's normal place(s) of work:
perhaps a country hotel or a purpose built decision conferencing suite. ICL. who
have been at the forefront of developing decision conferencing as a management tool,
have built a decision conferencing suite, in which all the necessary information

www.manaraa.com

228 S.FRENCH

technology is carefully and unobtrusively installed. They also have a number of
pods. in which the same information technology is present. but. far from being
unobtrusive. a virtue is made of its visibility. The computer-based GOSS facility at
the University of Arizona provides another style of environment (Nunamaker et al.
1988). The relative advantages of the ICL facilities and the Arizona facility are
discussed by Phillips (1989).

TIle facilitator leads the conference. guiding the discussion forward in a constructive
fashion. He or she is expert in three areas: group dynamics; rational decision theory;
and communication. The expertise in group dynamics enables the facilitator to
involve all participants in the debate. He or she contributes to the decision process
by ensuring that the objectives and uncertainties are taken account of in a rational
manner and by keeping the team task oriented. Throughout the facilitator uses
communication skills to ensure that all participants understand all the issues. as they
are identified. The facilitator is assisted by an analyst and, possibly, a recorder. The
analyst runs the software. generating models of the issues as they arise, which help
the management team gain insight into the situation facing them. The recorder uses a
wordprocessor to record the development of the debate and the reasoning behind the
judgements and decisions made by the management team. Because of the presence
of the recorder. the team are able to take a record of all the important conclusions and
an action list with them at the conclusion of the conference. More and more, the
roles of recorder and analyst are becoming identified. In the early days of decision
conferencing. the recorder and analyst needed a computer each; but with the advent
of multi-tasking windowing environments it is possible for one person to fulfil both
roles. Moreover. there are advantages if one person does. Inevitably. an analyst is
far more closely involved with the process than a recorder and so better placed to
record. for instance. the reasoning underlying a particular model

Each decision conference is different It evolves according to the needs of the OMs
and not according to some fixed agenda. There are. however. common themes and
patterns. The facilitator is always careful to ensure that the opening discussion is as
wide-ranging as possible. It is a rare decision conference in which a single focus for
discussion emerges in the opening few minutes. Throughout the event. discussion
returns again and again to the main issues as insights are gained and understanding
shared. No model is taken as definitive: all are Simply vehicles for exploring ideas.
Surprisingly. the analysis in decision conferences needs much less hard data than one
would. at first. think. Strategies have to be costed: that is clear. But the costings
need only be rough. It is a broad brush picture that the event seeks to create. Detail
can be added at a later date. (c.f. the remarks above about 'small world' models)

Decision conferences are highly creative events. Typically, participants arrive as
individuals. bemused and uncomfortable. unsure of a way forward. During the event
they create. evaluate, modify and re-evaluate options, building a strategy which they
all support. They leave as a committed team with a common purpose and
understanding of the issues. ready to implement the strategy they have created.

Decision conferences have found many applications. During the mid-1980s ICL
incorporated the approach into its organisational culture (Hall.1986). Decision
conferences were used to shape IQ.'s strategy in many fields. from R &0 decisions

www.manaraa.com

STRATEGIC DECISION ANALYSIS AND GROUP DECISION SUPPORT 229

concerning hardware development to marketing strategy and consultancy. Many
other companies have used decision conferencing. e.g. Dolland and Aitcheson. Mars
and Pactel. in areas as diverse as developing strategic options. allocating budgets
between the various divisions of an organisation. formulating organisational change.
developing industrial relations strategies. evaluating competitive bids. and choosing
investment strategies. Belton (1985) describes the use of decision conferencing
(although she explicitly avoids the term) to the choice of a computerised financial
management system. The method has been used in local and national government
Indeed. the strategic choice approach. which may be looked upon as a form of
decision conferencing. grew out of early worlc in facilitating local government
decisions (Friend and Hickling. 1987). Recently. decision conferencing was used to
investigate the decision making after the Chemobyl accident in the Soviet Union
(French et ai, 1992). While this last application was not a full use of the technique as
a GDSS - quite deliberately no decisions were taken during the conferences - it does
point the way to use of the technique in dealing with radiation protection issues.

Acknowledgements

I am especially grateful to Larry Phillips for many discussions and much advice and
help. I have also had many helpful discussions with Valerie Belton, Peter Hall.
David Rios Insua, Nigel Tout and Graham Wharton.

References

Bell. D.E .• Raiff&, H. and Tversky. A. (cds): 1988. Decision MaJcing, Cambridge University Press.
Cambridge

Belton. V.: 1985. 'The use of a simple multi-criteria model to assist in selection from a shortlist'. Journal
of tM Operatwnal Research Society. 36. 265-274

Belton. V.: 1990. in Hendry, L.C. and Eglese. R.W .• eds~ Operalional Research Tutorial Papers 1990.
Operational Research Society. Birmingham, pp. 53-101

Clemen, R.T.: 1991. MaJcing Hard Deciswns. PWS-Kent, Boston
Eden, C. and Radford, J. cds.: 1990. Taclding Stategic Problems, Sage. London
French. S.: 1986. Decision TMory. Ellis Horwood. Chichester
French. S. ed.: 1989. Readings in Deciswn Analysis. Chapman and Hall London
French, S .• Kelly, G.N. and Morrey. M.: 1992, 'Decision conferencing and the international Chemobyl

project'. lnternalwnal Journal of Radialwn Protectwn. in press
Friend, J. and Hickling, A.: 1987. Planning under Pressure. Pergamon. Oxford
Gorry, A.G. and Scott Morton. M.S.: 1971. 'A framework: for management information systems', Sloan

Management Review. 13. 55-70
Hall, P.: 1986. 'Managing change and gaining corporate commitment'. ICL Technical Journal. 7.

213-227
Handy. C.: 1985, Understanding Organisatwns. 3rd Edn. Penguin. Harmondsworth
Ignizio. J.P.: 1991. lntroductwn to Expert Systems. McGraw-Hill, New YIrl:
Jaques. E.: 1989. Requisite Organisation. Cason Hall Arlington
Lewis. P.J.: 1991. 'The decision making basis for information systems: the contribution of Vickers'

concept of appreciation to a soft systems perspective', European Journal of lnfonnalwn Systems. 1.
33-43

Nunamaker. IF .. Applegate. L.M. and Konsynski, B.R.: 1988. 'Computer-aided deliberation: model
management and group decision support', Operalwns Research. 36. 826-848

Phillips. L.D.: 1984. 'A theory of requisite decision models'. Acta Psychologica. 56, 29-48
Phillips. L.D.: 1989. 'Decision conferences: description. analysis and implications for group decision

support', DAU Technical Report, 89-2. London School of Economics

www.manaraa.com

230 S.FRENCH

Ramsay, F.P.: 1931, TM Foundt1lions of MQllwrIotics tmd OIMr Logical Essays, Keegan PIIII, London
RiOl Insaa, D. and Fn:ncb, S.: 1991, 'A t'nunc:wtlI"k for sensitivity analysis in disc:rete multi-objective

dec:ision-making' EuropeQIJ Journal ofOpnt1lio1llll ReulITch, 54, 176-190
Rosenbead. 1. ed.: 1989, Rt1Iio1llll A1IIlIysi8 for a Problmlolic Waid, Wiley, Chichester
Savage, LJ.: 1954, The Found4lions ofStalis/ics, Wiley, New York
Silver, MS.: 1991, SystD/V 'hoi SlIppo11 D«i8ion MaUn, Wiley, OUcbester
Simon, H.A.: 1960, TM NN Sdaa of MtI1ItIge_'" D«i8ion, Halper and Row, New York
Von Wmterfeldt. D. and Edwards, W.: 1986, Deci8ion A1IIIIysi8 tmd Belulvioural Research. Cambridge

University Press, Cambridge
WaIIon, S.R. and Buede. D.M.: 1987, D«i8ion SyntMsi8, Cambridge University Press, Cambridge

www.manaraa.com

TEN YEARS OF ADVANCES IN MACHINE LEARNING

Y. KODRATOFF

CNRS & Universite Paris Sud, LRI, Bldg 490, 91405 Orsay, France

Abstract. Inference is a very general reasoning process that allows to draw consequences
from some body of knowledge. Machine learning (ML) uses the three kinds of possible
inferences: deductive. inductive, and analogical. We describe here different methods, using
these inferences, that have been created during the last decade to improve the way machines
can learn. We include also genetic algorithms as an induction technique. We restrict our
presentation to the symbolic aspects of connectionism.
Due to space limitations some of the entries of this paper will be empty, especially those that
would deal of well-known techniques. The interested reader will consult "The Machine Learning
Series" cited at the beginning of the references.

1 - Introduction and definitions

Inference is a very general reasoning process which covers many particular
kinds. Let us note A 11- B that one can infer B from A. For any inference rule
A 11- B, 11- is said to be truth-preserving if whenever A is TRUE, then B is
also TRUE.
Deduction is classically defined as the mode of inference that preserves truth,
i.e., inference A 11- B, is a deduction if and only if B is TRUE whenever A is
TRUE. Induction does not preserve the truth, and. in order to somewhat
clarify the problem of induction, we shall give, in section 3, an explicit
description of several inductive processes.
Analogy does not preserve truth either. Its difference with induction is that it
relies on the comparison between existing complete knowledge and a set of
knowledge to be completed. For instance, in Gentner's Structure-mapping
theory, "the central intuition is that an analogy is the mapping of knowledge
from one domain (the base) into another (the target) which conveys that a
system of relations known to hold in the base also holds in the target"
(Falkenhainer, Forbus; and Gentner, 1986).
ML makes uses of the three types of reasoning. Associated to each type, we
find different systems. Some systems, such as Carbonell's group PRODIGY,
use the combination of several of them. Figure 1, below, gives an overview of
the different techniques, and shows how they rely on the way the inferences
are drawn.
The main bulk of ML systems belongs to induction. To these techniques, we
added the more recent ones, connectionism and genetic algorithms, even

231

P. Dewilde and J. Vandewalle (eds.J, Computer Systems and Software Engineering, 231-261.
© 1992 Kluwer Academic Publishers.

www.manaraa.com

232 Y. KODRA TOFF

though they are not born within the community of ML.

MACHINE LEARNING METHODS

DEDUCTION
(deductive reasoning)

modus ponens (resolution)

Declarative Examples
knowledge transformed
transformed into
into procedu. procedural
ral knowledge knowledge

AUTOMATIC EXPLANTION·
PROGRAM- BASED
MING, LEARNING

SYNTHESIS OF SYNTHESIS OF
PREDICATES PREDICATES
FROM THEIR FROM
SPECIFICATIO EXAMPLES

USING

-,------------
INDUCTION ANALOGY

(inductive reasoning) (case-based reasoning)

generalization,

abstraction,

particularization,
abduction (abduc·
tive recovery),

----=""""----............... uses background -re-:h~'e-s-on--
knowledge and similarity
causality inside measures
source

inversion of
resolution,

LEARNING
BY ANALOGY

"
no or little large amounts
(explicit!) of explicit
background background
knowledlle knowledlle

LEARNING
BY CASES

.. (empIrlcallearnang) (constructl.ve learnang)

· · · · ·

· · · · · ·

I. ' • ,. .. .,.
: SBL -. : '.

.... AQ ivERSIOIV',
ID3 ' • SPACES "

CONCEPTUAL ~

CLUSTERING ~
~ : GENERALIZ· ~
'\ : ATION -',

GENETIC ALGORITHMS '. . . . , ,
: " : MULTI-STRATEGY'"
! CONNECTIONISM '! APPROACHES '

Figure 1. ML methods using three types of inferences.

Some methods, such as 103, follow the widely acknowledged opinion that
induction is knowledge poor. As stated in figure 1, however, this means poor
in·explicit-knowledge. A large amount of background knowledge is actually
contained in the way examples are represented. On another hand, many
inductive systems use explicit background knowledge in order to guide their

www.manaraa.com

TEN YEARS OF ADVANCES IN MACHINE LEARNING 233

inductive leaps.
In the following all the systems present in the leaves of figure 1 will be
detailed, except induction from procedures that yielded no large system yet.

2 - Systems based on deduction

2.1 - Automatic programming

Automatic programming (AP) developed mainly outside the main stream of
ML. Let us give a somewhat sketchy description of what it is about.

- INTUITIVE PRESENTATION
Informally speaking, let us suppose that you have a full refrigerator and you
would like a tasty and nice sandwich composed from things that are in this
refrigerator. Therefore, you know what you have (refrigerator) and what you
would like to have (tasteful and nice sandwich). You can now imagine a robot
which would prepare such a sandwich for you.

The goal of AP is to construct automatically programs which make
possible to the robot to compose your sandwich disposing with your
refrigerator and knowing only your requirement (tasteful and nice) on this
sandwich. Your requirement describes what the robot has to achieve, but it
does not describe how this particular goal has to be achieved. In other words,
your requirement is not a procedure which describes step by step what the
robot has to do in order to achieve the desired goal. AP aims at providing
such a procedure.

A bit more formally, your specification of the program
make _sandwich consists of an input x (things that are in refrigerator), an
input condition P(x) (for instance, these things must be edible, written
edible(x)), an output Z (sandwich(z)), and an input-output relation Q(x,z)
(composedJrom(x,z) & tasty(z) & nice(z). The goal of AP is to construct
automatically the program make_sandwich, i.e., construct automatically a
procedure which describes step by step what the robot has to do in order to
achieve the desired goal.

- FORMAL PRESENTATION
Formally now, a specification of a program Prog consists of an input vector x,
an input condition P(x), an output vector z, and an input-output relation
Q(x,z). The input condition P(x) is TRUE, if and only if x is an acceptable
input for the desired program. The input-output relation Q(x,z) describes
relational1 links between the input and the output. In other words, AP tries to

1 By relational links we mean here that it is not necessary to describe in which way we will

www.manaraa.com

234 Y. KODRATOFF

find a program Prog such that
(R1) Z = Prog(x)
(R2) if P(x) then Q(x,z).

For instance, the quotient-remainder problem is specified as follows:
the input vector x is the couple (x 1, x2)
the input condition P(x) is the fonnula x2 > 0
the output vector x is the couplOe (z 1, z2)
the input-output relation Q(x,z) is the fonnula (xl = x2 * zl +

z2) & (z2 < x2)

When P and Q are fonnulae, as it is in this example, the specification of Prog
by (Rt) and (R2) is called a formal specification. However, there are other
ways to specify a program. For instance, one may give a finite set of input
output values, as it is the case in program synthesis from examples. One may
also give a trace of the execution of a desired program. In this case, we speak
of program synthesis from traces.

When a program is specified by a formal specification, AP obtains Prog
through an inductive proor2 of the so-called Specification Theorem

'r/x (P(x) ~ 3z Q(x,z», (ST)

This theorem comes simply from the specification ''for x satisfying P(x), find
Z verifying Q(x,z)". We quantify here universally the input vector x and
existentially the output vector z. Let us denote by F(x) the formula P(x) ~ 3z
Q(x,z). Then, ST is exactly 'r/x F(x). Let ~ denotes the Skolem function
corresponding to ST, i.e., Z = ~(x). When the input vector x belongs to a well
founded domain, from an inductive proof of ST it is possible to extract a
recursive definition of cj>. In other words, an inductive proof of ST provides a
recursive definition (Le., a program) for ~. The function ~, obtained in this
way, corresponds to the target program Prog. Because the program obtained
is extracted from a constructive proof of ST, its correctness with respect to the
specification is assured (Sato, 1979). In other words, the proof of ST becomes
as well a proof for the formula 'r/x (P(x) ~ Q(x,Prog(x»).

This explains the importance of inductive theorem proving for automatic
construction of programs from formal specifications. However, the
construction of systems which perform induction proofs for theorems
containing existential quantifiers is not a simple task.

compute the output z for a given value of the input x.

2 We call by inductive proof any transformation of a given theorem. which uses explicitly or
implicitly the induction principle.

www.manaraa.com

TEN YEARS OF ADVANCES IN MACHINE LEARNING 235

Program synthesis from input-output examples and from computation traces
are described in detail in (Kodratoff, 1988).

2.2 - Predicate Synthesis from their specifications

- INTUITIVE PRESENTATION
Let us consider the following specification for the subtraction function in
natural numbers: Given two natural numbers x and y,find z such that x + z =
y. To this specification corresponds the so-called specification theorem
(Manna and Waldinger, 1980; Franova, 1988)

V'x V'y 3z (x + z = y) (Tl)
For instance, for x=3 and y=7 we have z=4. Let us consider now x=7 and
y=3. In the theory of natural numbers with the following recursive definition
of addition +: ?{Jl.fJ'x ?{Jl.fJ' ~ 9{~fJ'

ai26: 0 + u = u. ai28: u + S(v) = S(u + v).
ai27: u + 0 = u. ai29: S(u) + v = S(u + v).

obviously, there is no z verifying 7+z=4. Therefore, TI is FALSE.

We can see, however, that there is a set U of couples (x,y), for which
we can find z satisfying the input-output relation x+z=y. For instance, the
couples (3,7), (1,8), (25,40) belong to U, because the respective outputs are 4,
7 and 15. This set U can be characterized by a predicate P, which, when taken
as a precondition to Tl makes TRUE the new theorem

V'x V'y {P(x,y) ::} 3z (x + z = y)}. (T2)
The goal of predicate synthesis from formal specification is to provide a
(recursive) definition for P.

- SEMI-INTUITIVE PRESENTATION
More formally, let us suppose we want to prove a theorem V'x A(x) in a set T.
Let us suppose we have found out this theorem is FALSE, but A(x) is verified
for some x. We say that V'x A(x) is partially FALSE. Since this theorem is
universally quantified, to say that the theorem is FALSE, means that there are
elements y in T for which -.A(y) holds.

Therefore, we can write T as a union of two sets,
one, say U, to which all elements satisfying A T
belong, the other, say V, to which all elements
satisfying -.A belong.
The problem is to characterize, by a predicate P, the set U in such a way that
if an element x of T satisfies this P(x) then x E U, i.e., A(x), also is satisfied.
Thus, the theorem V'x {P(x) ::} A(x)} is then TRUE.
To look for a characterization of U corresponds to a search for preconditions,
a well-known problem in automatic programming from incomplete
specifications (Guiho, 1983; Smith, 1985).

www.manaraa.com

236 Y. KODRATOFF

- FORMAL PRESENTATION
Let Vx A(x) be a partially FALSE theorem. Let P (:;t FALSE) be a predicate
such that "tx {P(x) => A(x)} is TRUE. We say that the theorem "tx A(x) is a
formal specification of the predicate P, and we call Predicate Synthesis from
formal specifications (PreS) the task of obtaining P from its formal
specification.

2.3 - Explanation-based learning

We already described EBL in several introductory courses (Kodratoff, 1988).
In principle, EBL transforms a general rule Rgi into a more particular Rp. Rp
is more efficient than Rgi because it contains implicitly the analysis of the
application of Rg1 to a particular example. Therefore, EBL is a way to
acquire some strategic knowledge on the way to use Rgl. This knowledge is
directly incorporated in Rp. Since Rg1 and Rp are written in the same logic,
no meta-rule is added to the set {Rg} of general rules one started from. In
standard EBL, {Rg) and {Rp} belong to first order logic. PRODIGY contains,
besides a set of first order {Rg1}, also some meta-knowledge on how the
problem solver works, thus some second order knowledge. Combining these
two sources of knowledge, it is therefore able to generate both rules {Rp} in
first order, and rules {Rp2} in second order, that tell how to use efficiently the
rules {Rg} or {Rp}. For instance, PRODIGY can generate rules like "Select
IS_POLISHED«obj» before IS_REFLECTIVE«obj» if both are present in
the same conjunctive subgoal" (Carbonell and Gill, 1990).

2.4 - Synthesis of predicates from examples
Empty due to space limitation. See (Mugg1eton and Buntine, 1988;
Rouveirol, 1991; Quillian, 1991).

2.5 - Explanation-Based Learning (EBL) in strong theory domains
Empty.due to space limitation. See, however, Kodratoff (1988, 1989, 1990a,
1992).

2.6 - Explanation-Based Learning (EBL) in weak theory domains
Empty due to space limitation. See, however, Kodratoff (1988, 1989, 1990a,
1992).

2.7 - PAC-learning

The most popular way to transform inductive procedures into sounder ones is
the measurement of the statistical amount of errors that are possible with a

www.manaraa.com

TEN YEARS OF ADVANCES IN MACHINE LEARNING 237

given probability. This approach is taken by Valiant's (1984) probably
approximately correct (PAC) learning.
The problem stated by Valiant is the characterization of learning problems
that can be learned in polynomial time, with an approximation of the
probable error on the result of the learning. In order to illustrate the concept,
consider the example of a new casino entrance watcher. He will have to learn
to recognize from sight people that are under 18. He will learn this task
during a training phase, by observing an experienced watcher in action. His
employers do not want him to take too much time to learn an efficient
recognition procedure, hence the polynomial time requirement. They will
want to have some confidence in his judgments, hence a confidence factor o.
Suppose that the employers want him to identify non adults correctly in 99.9
% of the cases, thus 0 = 0.001. They allow nevertheless allow some tolerance
e on the errors he will be doing, say, he should not bother for nothing more
than one adult over 10 000. The error tolerance will thus be E = 0.0001. In
other words, the employers want to be sure, with a probability greater than E,

to have a bad choice with a probability less than o.
More formally, let U be a countable universe of objects, the set of all persons
gambling at casinos, in our example. Let Ll, L2, etc., be a countable family
of subsets of U (subsets of such gamblers). The task is is to identify one of
these subsets Lun, given access to a sampling oracle ORA (the set of people
met by our new watcher during his training phase). In our example, Lun is
the set of people under 18 of age, and ORA is the experienced watcher who is
working before the inexperienced one. Let us suppose that we dispose of a
distance d that defines the distance between two subsets Li and Lj. We shall
say that an identification procedure that learns to recognize Lh is a PAC
correct identification of Lun if and only if we have a probability less than 0
that the distance between Lun and Lh is greater than E, in other words that

Pr[d(Lun, Lh) ~ e) ~ o.
To make this definition totally correct, we still need to define d. Let D be a
(possibly unknown) probability distribution on the elements of U. Let
DIFSYM(S, T) be the symmetric difference of sets S and T, i.e., the sets of
elements that are in S or in T, but not in both, DIFSYM(S, T) = (S - T) u (T -
S). Let Pro(x) denote the probability (relative to the distribution D) to find
the element x in U. Then define

d(S, T) = L Pro(x)
x E DIFSYM(S, T)

This distance is the probability that a random call will draw an element which
is either in S or T, and in none other subset of U. It is the distance one has to
choose in order to define precisely a PAC identification.

In order to illustrate these definitions, let us present an example from Angluin

www.manaraa.com

238 Y. KODRATOFF

and Laird (1988). Let us consider the problem of learning a rule that agrees
with m examples, from a set of n given rules. Let L = {LI, ... , Ln} be this set
of n rules. An algorithm that needs m = (1/e) 1o(n/O) examples to learn such a
rule can be said to be a PAC learning algorithm. For this, let us show that a
rule agreeing with at least m examples shows an error greater than e only with
probability less than O. Let Lh be a rule with error such that d(Lun, Lh) ~ e.
The probability for a random example to agree with Lh is less than (1 - e);
thus the probability for m random examples to all agree with Lh is less than
(1 - e)m, which is bounded bye-em = oln. Obviously, there are at most N-l
rules that give such a bad answer, thus the probability that one of them agrees
with all m examples is bounded by o. Thus, by definition, our algorithm is a
PAC learning algorithm.
Suppose that we are in the simple case where only two rules are possible, then
the number of examples necessary to learn with an error less than 0.0001
with a confidence greater than 99% is thus m = 10 000 10 (200) ::: 53 000.
Since most people will need little more than one example to do the job, one
could question the links of PAC learning with reality.
However, in a very recent work, Greiner and Elkan (1991) compute the
number of examples to build a representation, and find bounds of the same
order as those of PAC learning. In other words, this shows that the above 53
000 examples are actually needed for establishing a representation of the
examples in which the rules make sense, besides the simple learning. It is then
quite reasonable to ask so many examples for a task as complex as building a
representation and learning in this representation. In such a case, many of the
examples are implicitly contained in the knowledge about the domain when it
is introduced in the representation.
This allows to understand two things. First, why simple knowledge-poor
systems do learn anything at all from relatively few examples? Because they
use a representation of knowledge which contains already large amounts of
(implicit) examples. Secondly, one of the main trends of ML research during
these last 10 years has been to combine examples to existing knowledge in
order to refine the learning. This knowledge, now explicitly provided,
replaces the masses of examples that would be necessary without it.

3 - A description of some inductive processes

We shall refine Peirce's definition (1965) of induction by seeing it as being
built from elementary inductive processes, such as abduction, and several
other processes described later in this section. For us, induction will be "the
process by which one builds theories from facts," as stated by Peirce, and
which combines some of the elementary inductive processes with as many
deductive steps as deemed necessary. In that sense, induction is defined as a

www.manaraa.com

TEN YEARS OF ADVANCES IN MACHINE LEARNING 239

multi-strategy mechanism.
The best known elementary inductive processes used in machine learning are
generalization and abduction (Michalski and Kodratoff, 1990). Without any
pretense to be exhaustive3, we shall present here five other forms of inductive
reasoning that we shall call causality determination, attribution of properties,
spatial or temporal inclusion, clustering & chunking, and their relation to
numeric induction.

3.1- Abduction

Let us recall that the classical rule for abduction, as given by Peirce, is an
inductive version of modus ponens, i.c., a kind of inversion of modus ponens
in which instead of deducing B from A and A => B, one induces A from B
and A => B4. For instance, knowing that \fx[Drunk(x) => Stumbling(x)], one
deduces from Drunk(Bob) that Stumbling(Bob). On the contrary, one
induces from seeing a particular person stumbling that he might be drunk.

3.2 - Generalization

Generalization is also a process by which modus ponens is inverted, but the
implication has the form \fx [F(x)] => F(a). This implication is always TRUE,
therefore modus ponens is simply "from \fx [F(x)], infer F(a)."
Generalization thus infers \fx [F(x)] from F(a).
In practice, generalization is very important in the organization of knowledge,
it builds trees of dependencies the links of which are IS_A links. Many details
about generalization can be found in Michalski (1983, 1984), Dietterich and
Michalski (1981), Kodratoff (1983, 1988, 1990a), Vrain (1990).

3.3 - Causality determination

When several phenomena seem to occur simultaneously, one might
hypothesize that some are the cause of the others. Choosing which
phenomenon causes the other can be done by deduction, and in that case, we
dispose of a proof of what the cause is, but it can be also done by induction.
Unfortunately, we have no place here to insist on the interesting problem of

3 For instance, we do not study here these types of inductive inferences one can get by using a
sub-part of (albeit its name, deductive) mathematical induction, such as inducing on a finite
number of instances, inducing on incomplete base cases study, etc.
4 An important application of induction and of abduction is the completion of failed proofs
(Cox and Pietrzykowski, 1986; Duval and Kodratoff, 1990). Abduction is used as follows. A
proof fails because one fails to prove B, it is noted that A ~ B, and one makes the abduction of
A, which of course proves B, and therefore allows to complete the proof.

www.manaraa.com

240 Y. KODRATOFF

probabilistic causality, see, for instance, (Dupre, 1990).
This structures knowledge by creating semantic links "CAUSES" inside the
knowledge.

3.4 - Attribution of properties

When several simultaneous observations are done, one can also hypothesize
that one of them is a concept, while the others are the properties of this
concept. Choosing which is the concept, and which are the properties, is an
induction. It creates "HAS_PROPERTY" links among the knowledge.

3.5 - Spatial or temporal inclusion

Spatial (or temporal) inclusion means that all events happening within the
spatially (or temporally) included region implies that it happens as well in the
including one. This information structures the knowledge in PART_OF trees
of dependency, instead of the IS_A ones built by the generalization process.

3.6 - Clustering and chunking

Clustering brings together several pieces of knowledge, such as objects of the
world, concepts, properties, or relations. For a thorough discussion of the
links between symbolic and numeric approaches, one can consult Stepp and
Michalski (1983), and Kodratoff and Diday (1991).
Chunking keeps as a unit a sequence of operations which has proven useful
during a problem solving episode. This approach as been exemplified by the
systems SOAR (Laird et al. 1986, 1987) which implements chunking in a
problem solving environment and PRODIGY (Carbonell, Knoblock, and
Minton, 1990) which does so among other mechanisms.

3.7 - Numeric indu~tion

Let us present here the definition that can be obtained through a definition of
probabilistic causality, as stated by (Suppes, 1984), for instance. B is said to
be the cause of A if and only if 1 -B occurs earlier than A, 2 - the
conditional probability of A occurring when B occurs is greater than the
unconditional probability of A occurring. This definition makes of statistical
induction a primary way of structuring knowledge by including causal links
in it.

www.manaraa.com

TEN YEARS OF ADVANCES IN MACHINE LEARNING 241

3.8 - Conclusion: induction structures knowledge into several nets

One can say that inductions create a net of implications among pieces of
knowledge otherwise independent.
This net of implication must obviously be coherent, a simple requirement that
forces the existence of quite strong structures within the net since implication
chains pointing at any A are forbidden to lead to ... A. A well-known example
of such chains are the branches of a taxonomy of generality as natural
sciences often produce.
We must also stress that these implications have different semantics depending
on their origin. For instance, an implication originating from an induction on
causality will transfer causal relations, and no property inheritance, while an
implication coming from an induction about generality will transfer no
causality but property inheritance. In other words, knowledge is represented
by a network of implications. These implications are labelled by their
semantics, such as IS_A, CAUSES, HAS_PROPERTY, PART_OF, depending
which kind of induction each link originates from. For instance, consider the
taxonomy of fungi, as given by the natural sciences. We can also consider the
functionalities of the fungi, say, their edibility/poisonousness, and the
associate networks of causalities. This gives two different networks of
implications that must be coherent.

4 - Examples of inductive learning

Let us present here nine induction methods. The seven first ones are
stemming from the ML community, the last two ones are born from
independent communities. Except structural matching, all of them rely
essentially on a zeroth order representation. It is thus a good place to discuss
why so many inductive systems are zeroth-order logic, and what can be
gained (or lost) by going up to first order.
In theory, first order allows the presence of universally or existentially
quantified variables. As an example, think of the description of a chemical
molecule. Some molecules may have the property that all carbons are linked
to at least one hydrogen. This is a typical propeny that cannot be described
but with a universally quantified variable. Another molecule might be
described by that that it contains at least one oxygen molecule. This is a
typical property that cannot be described but with an existentially quantified
variable.
In practice, we would like to draw here some of the consequences of such
representation choices. In the above examples, we have been expressing
relations among atoms in order to define properties of molecules. More
generally, first order well expresses such relations, while zeroth order is very
poor at it. As a simpler example, consider the recognition of a figure that
contains at least two segments, perpendicular to each other, and having a

www.manaraa.com

242 Y. KODRATOFF

common extremity. This property can well be represented in zeroth order, for
instance in a feature-value representation such as:
(angle_segmentLsegment2 = 90°) & (endl_segmenq = endl_segment2).
Suppose now that we want to use this knowledge to recognize the presence of
such segments. Suppose that the figure contains many segments, and that the
naming of the segments is such that the perpendicular segments are named
segmentn, uf;l or 2, then, to zeroth order, (angle_segmentLsegment2 = 90°)
& (endl_segmenq = endLsegment2) is totally different from, say,
(angle_segment3_segment4 = 90°) & (endl_segment3 = endl_segment4).
Thus zeroth order representation fails recognizing the scene. This problem
can be avoided when we dispose of an unambiguous way of naming objects.
When this restriction is met, zeroth-order representations are quite efficient.
In first order logic, the property we are expressing can be written as:
(angle(xl, x2) = 90°) & (end(xl) = end(x2), where it is understood that we
mean that there exist such xl and x2. Then the recognition system can look
at all pairs of segments, select those that are perpendicular, and then, among
them, select those that have a common end.
This example shows a second consequence of first order logic of high
practical importance: all combinations of instances that satisfy a given
relation are tried out. This feature is desirable since it exhausts the
possibilities of the patterns to be recognized. This feature becomes
unbearable whenever there are too many possibilities. Then, one has to
choose heuristics in order to cut down the complexity.
In the context of learning, this exploration of combination takes also place at
the moment a recognition function is invented. For instance, suppose that we
want to learn about fathers, and that we have three examples of fathers, John,
Peter, and Tom. Suppose that John and Peter have A grade type children, and
that John and Tom have sport fanatics' children. If we start generalizing on
John and Peter, we lose the knowledge that John's children are also sport
fanatics. Generalization to first order techniques must thus include
mechanisms that optimize the choices done in the ordering of the examples.
In conclusion, the main practical features of first order logic (as opposed to
zeroth order representations) are that 1 - it allows to express relations among
the features, 2 - it takes into account the possible combinations of the
predicates in order to generate recognition functions.

4.1 - ID3

The aim of this method is as follows. Given a set of descriptors, of examples
and of concepts the examples belong to, find the most efficient way to
classify all the examples under the concept they belong to, i.e., find the most
efficient way to "recognize" the examples. The method relies on information

www.manaraa.com

TEN YEARS OF ADVANCES IN MACHINE LEARNING 243

theory, it measures the amount of information associated with each descriptor,
and chooses the most informative one. By applying descriptors in succession,
a decision tree is built that will recognize the examples. As opposed to similar
numerical techniques, ID3 preserves the understandability of its results by
avoiding introducing linear combinations of descriptors.
In figure 1, we ordered the methods by the amount of background
knowledge they rely on. ID3 is typically knowledge poor. Nevertheless, all
the works done on ID3 from the original version (Quinlan, 1983) to its recent
improvements (see for instance (Bratko and Lavrac, 1987» are centered on
understandability rather than on efficiency, which, by the way, gives to these
works their deep originality as well as their belonging to AI. Besides, it seems
that most improvements in understandability have been followed by
efficiency increase as well (Bratko, 1988).
For more details, see Kodratoff (1988, 1989, 1990a, 1992).

4.2 - INDUCE

INDUCE builds a function R that recognizes positive examples and
rejects negative ones, i.e., a complete and coherent function. In order to
achieve this goal, it starts by building the most general recognition function
Ri which recognizes the example ei and rejects the set of examples {ej}.

Let POS be the set of positive examples, and NEG be the set of
negative examples, let ei be the current member of POS. The algorithm to
compute R is as follows.
First, as we said, suppose that we have been able to compute Ri, the
recognition function that recognizes ej (and some others of paS), and rejects
all instances of NEG. If it happens that Ri recognizes all of pas, we have
obtained a complete and consistent recognition function, R = Ri. If not,
choose an other example ej, and compute Rj. Then, Ri v Rj (where v is the
logical disjunction) will improve on ek, it is consistent by construction. The
process goes on as long Ri v ... v Rn is not complete.
For more details, see Kodratoff (1988, 1989, 1990a, 1992).

4.3 - Structural Matching (SM)

This is a first order generalization technique. Two formulas
structurally match (they "SMatch") if they are identical except for the
constants and the variables that instantiate their predicates.

More formally: Let El and E2 be two formulae, El SMatches E2 if
and only if there exists a formula C and two substitutions s I, s2 such that:

I-sloC = EI and S2°C = E2.
2-s I and S2 never substitute a variable by a formula or a function.

www.manaraa.com

244 Y. KODRATOFF

where 0 denotes the application of a substitution to a formula.
It must be understood that SM may be difficult up to undecidable.

Nevertheless, in most cases, one can use the infonnation coming from the
other examples, in order to know how to orient the proofs necessary to the
application of this definition. Even if SM fails (which may often occur), the
effects of the attempt to put into SM may still be interesting. We say that two
formulae have been SMatched when every possible property has been used in
order to put them into SM. If the SM is a success, then SMatching is identical
to putting into SM. Otherwise, SMatching keeps the best possible result in the
direction of matching fonnulae.
For more details, see Kodratoff (1988, 1989, 1990a, 1992) and Vrain (1990).

4.4 - Knowledge refinement

Most inductive machine learning techniques produce knowledge bases that
need to be verified in order to find possible errors. Once errors are found,
machine learning techniques can be used again to propose corrections to the
knowledge'base. In contrast to classical inductive techniques, knowledge base
refinement has to be knowledge intensive and incremental.
Systems typical of this approach are CLINT (De Raedt and Bruynooghe,
1989; De Raedt 1991), DISCIPLE (Tecuci and Kodratoff, 1990). and
MOBAL (Morik, 1988). All three systems generate examples that are
accepted or rejected by the user, and they refine their knowledge in
accordance with the user's reactions. DISCIPLE relies on the relevance of
explanations for success and failure, proposed to the user, and maybe
improved by him. MOBAL and CLINT rely on consistency checking, and
both are based on logic programming. They draw the consequences of the
acquired knowledge and ask advice to their user when an inconsistency is
met. CLINT learns by increasing the possible different syntax for the clauses
(e.g., allowing predicates with one more variable as before) and can use meta
level properties in the form of integrity constraints. MOBAL learns by several
means, one of them is a progressive organization of the knowledge in
hierarchical structures, another one is the propagation of consequences of
second order rules, i.e., rules that describe properties of rules.

4.5 - Inductive Logic Programming

This very new sub-domain of ML is concerned by a rationalization of the
inductive steps performed when writing a program in a logic programming
language. It can be seen as represented by two approaches. The semantical
approach (Muggleton and Buntine. 1988; Rouveirol and Puget. 1990) is
based on the principle of inverse resolution and its derivations. The

www.manaraa.com

TEN YEARS OF ADVANCES IN MACHINE LEARNING 245

syntactical approach (Shapiro. 1983; Quinlan. 1991) is derived from classical
generalization methods and operators.
The main difference between the two directions is that the syntactical
approach performs small syntactic generalization or specialization steps (e.g .•
remove a condition or add one) while the semantical direction takes into
account the available knowledge. and allows itself larger inductive steps.

4.6 - Scientific discovery

Several early computer programs have been constructed that simulate various
aspects of discovery (Lenat. 1977, 1983; Buchanan. 1978; Langley, 1981;
Michalski and Stepp, 1981; Langley, Zytkow, Simon, and Bradshaw, 1983).
Although they show interesting performance on various discovery tasks, each
has a very narrow scope of applicability, as compared to human capabilities.
since the whole process of scientific discovery is too complex. Nevertheless,
an approximation to it can be found in the following five steps

- cluster the data according some similarities
- hypothesize the form of the laws that can possibly fit the data
- discover the exact fonn of law describing some regularity among

the data
- evaluate the law by examining how well it fits the data

In the last few years, steps towards a complete computational model of the
scientific discovery process, integrating these five steps, have been attempted.
at least partially. These systems introduce the ability to determine the
conditions of the applicability of a law (the ABACUS systems, Falkenhainer
and Michalski, 1990; FAHRENHEIT, Zytkow, 1987; Koehn and Zytkow,
1986; ARC, Moulet, 1991). the ability to design experiments (KEKADA,
Kulkarni and Simon, 1988; FAHRENHEIT, Koehn and Zytkow. 1986). the
ability to represent processes (Forbus, 1984), the ability to reason by analogy
(Falkenhainer and Rajamoney, 1988; Falkenhainer. 1987), and the ability to
revise a theory (STAHL, Zytkow and Simon. 1986; ST AHLp. Rose and
Langley, 1986; Rajamoney, 1988). An integration of all these abilities can be
found in Sleeman's informal qualitative models (IQMs) (Sleeman et a!..
1989).

4.7 - Conceptual clustering

Conceptual clustering is defined by the tight interaction existing between the
clustering and its meaning. Classical Data Analysis is certainly able to
compute clusters of examples. and to find generalizations that describe each
cluster. What is new in conceptual clustering is that the result of the clustering,
i.e .• a set of related examples. is performed by using a quality criterion

www.manaraa.com

246 Y. KODRATOFF

relative to the concept that characterizes the cluster. This demands a kind of
utility measure which is more complex than the distances used by Data
Analysis.

4.7.1 - COBWEB (Fisher, 1987)

COBWEB is a system that performs conceptual clustering in zeroth-order
logic (using an attribute-value representation), and in an incremental way. It
uses a measure, named category utility, that heuristically evaluates the utility
of a concept, relative to its degree of generality. A useful concept is a tradeoff
between very general concepts that are not precise enough, and very
particular concepts that are lengthy to retrieve. In practice, Fisher uses a
utility measure defined by Gluck and Corter (1985). It is a combination of
intra-class similarity (which reflects how much predictable is a value for class
members) and of inter-class dissimilarity (which reflects how much a value is
predictive for a class). For instance, intra-class similarity for class Ck is
computed by the probability for feature Fi to take value Vij. It is written as
P(Fi = Vij I Ck). Considering the concept of mammal, the probability
P(habitat = lives_on~round I mammal) is the ratio of the count of examples
that describe a mammal that lives on ground to the total number of examples
of mammals. On the contrary, interclass similarity depends on P(Ck I Fi =
Vij) since the larger this probability, the fewer the objects in different classes
share value Vij. and the more predictive is the value for the class.
The value of the utility measure is computed from the actual examples. It
allows to place a new example in an existing class. Whenever this operation is
less interesting in terms of utility measure than creating a new class, a new
class is created. It may also happen that merging two classes, or splitting an
existing class are more efficient, still in terms of utility measure. COBWEB
accordingly reacts to the introduction of a new example.
Thus, based on the utility measure, new concepts are created or destroyed
incrementally with the input of new examples. A concept is characterized by
an attribute-value probability. In that sense, concepts in COBWEB are
probabilistic concepts.
Once the learning is considered as completed, COBWEB has generated a
classification tree for examples it has been learning from, and each node of
the tree is a concept which has been thus discovered by the system.

4.7.2 - KBG (Knowledge-Based Generalization) (Bisson, 1991)

KBG is a system that performs conceptual clustering in first-order logic, and
in a non-incremental way.
As we already stated, the main features of first order logic (as opposed to

www.manaraa.com

TEN YEARS OF ADVANCES IN MACHINE LEARNING 247

zeroth order representations) are that 1 - it allows to express relations among
the features, 2 - it takes into account the possible combinations of the
predicates in order to generate recognition functions. Thus, in KBG, the
utility measure is not linked to a statistical count of the occurrences since the
total number of occurrences cannot be too high unless it generates a
combinatory explosion. It is rather linked to a similarity measure that takes
into account the existence of n-ary relations. For instance, consider the
similarity between the relations father(John, Peter) and father(Tom, Betty). It
is clear that the similarity between John and Tom depends on many factors,
among which the similarity between Peter and Betty. Depending on the
context, the function measuring the similarity between Peter and Betty can
even induce greater similarity between John and Tom (say, they are both
parents of teenagers) or reduce the similarity between John and Tom (say, the
problems of a parent of a female teenager may be widely different of those
of the parent of a male teenager). Inversely, the similarity between Peter and
Betty depends also of the similarity between John and Tom (say, they are
both children of middle-class parents).The similarity measure in KBG takes
into account this transmission of similarities among siblings of the same
predicate.
Once the Similarity among all objects in computed, they are clustered
according to this measure, depending on user-fixed thresholds to define the
distance in similarity authorized inside a class. The most central exemplar of
a class is chosen as prototype and generalization is then driven by the
prototype.

4.8 - Genetic algorithms

They can be viewed as a new search technique, original by the two following
features.

- The search is done in parallel by numerous individuals,
- some individuals are very far from the mean, in order to check

regions that are far from the one where convergence is currently taking place.
Choice of a representation (and an example problem)

Consider a robot moving in an environemnt with obstacles, as schematized in
figure 2.
The detection of an obstacle will be represented by a string of bits in which
the nth bit is at 0 if there is no obstacle in the nth direction, at 1 otherwise.
In figure 2, the robot sees obstacles in directions 2, 5 and 6. This is
represented by giving the value 1 to bits 2nd, 5th and 6th bits of a vector of
bits: (01001100).

The direction of motor 1 is the same as the direction of detector 1. We
represent that a motor is active by giving the value 1 to the corresponding bit.

www.manaraa.com

248 Y.KODRATOFF

obatacle 1

direction 1
_ direction direction 2
of the robot'. direction 3
head

direction 8 ~+~~-+I~ direction "'

direction 7

Figure 2. The central square represent the robot. It can detect obstacles in directions 1 to 8, but

it can move only in direction I, 3, 5, and 7.

Thus, for instance, that only motor 1 is active is represented by (1000), that
only motor 2 and motor 4 are active is represented by (0101).
The chains of bits can also contain the symbol ""''', meaning that the value of
the corresponding bit is either 0 or l. Therefore, this symbol plays the role of
a variable for the GAs.
The command of the robot is thus represented by a set of rules of the fonn
(********) ---+ ("'***). The left part of the rule corresponds to the
environment of the robot, and its right part describes the move associated to
that environment.

Rewarding and selecting a rule
The so-called "strength" of a rule is defined as its utility in a given
environment. This is a function written by the GA's maker. It relies heavily on
the maker's knowledge of the application field. A bad definition of the
strength of a rule will lead to very slow convergence of the GA.
In our example, let us call F the mean distance of the robot from the p nearest
obstacles. Let us then call Fi+ the value of function F after application of rule

i, and Fi - its value before the application of rule i.
Let us call Vi a function of the robot's speed after application of rule i. Vi is 0
if the robot is not headed towards an obstacle and has the value v of the
robot's speed if it is headed towards an obstacle.
This will allow us to define a reward function, Ii, for the application of a rule i

by: ri = F(- Fi+ - Vi.
Let then ri (n) be a function which gives the value of the reward of the rule ri
at its nth application. The strength of a rule varies depending on the number
of times it is applied. It is a function STRENGTHi(n) defined by the mean of
all its rewards: STRENGTHi(n) = [In Ii (n)]/n.

Modification of the system of rules

www.manaraa.com

TEN YEARS OF ADVANCES IN MACHINE LEARNING 249

Among K rules, let us choose the M strongest ones. From these M rules,
generate P new rules. After a cycle, the system will contain the M strongest
rules and their descendent. This selection-reproduction cycle is iterated many
times.
There are three main genetic operators used to generate new rules.

- Duplication
- Mutation

This is a set of admissible changes to be perfonned on the rules.
For instance, considering the rule (01001100) ~ (1000), one can become
aware that the move is always right, without dependence on the existence of
obstacles in 5 and 6. Thus, the following more general rule can be generated:
(0100**00) ~ (1000).

- Cross-over
place of cross-over

Rl (--I)~(****)
(010*0, 1001*110)

R 2 (-)
(0010* 10****10) ~ (****)

gives
R' (--) ~(****)

1 (010*0 10****10)

R' (-) ~(****)
2 (0010* 1001 *110)

Figure 3. A graphical example of a cross-over.

The cross-over of (010*0 1001 *110) and (0010* 10****10) between the
5th and the 6th bits creates two new chains: (010*0 10****10) et (0010*
1001 *110).

4.9 - Neural networks

Since neural networks (NN s) do learn, but are not born within the ML
community, they came as a challenge to this community, which started at
once establishing comparisons between neural network methodologies and its
own (Fisher and McKusick, 1989; Mooney, Shavlik, Towell, and Grove, 1989;
Shavlik and Towell, 1990; Weiss and Kapouleas, 1989; Dietterich, Hild, and
Bakiri, 1990; Dietterich and Bakiri, 1991). In a few words, it seems that the
general conclusions of these comparisons are fivefold.

1 - NNs learn better on noisy data
2 - NNs learn better when background knowledge is poor
3 - NNs learn very slowly
4 - NNs need a large amount of work before they learn properly
5 - NNs do not deliver understandable rules.

We shall address rather on points 2 and 5, which are related with interactions
with their field users.
NNs use hidden layers are those between the symbolic attributes describing
the concept, and the concept itself. In general, no special semantic is given to

www.manaraa.com

250 Y. KODRA TOFF

each node in the hidden unit. There are two possible approaches in order to
"symbolize" these hidden units. One is to provide them with a meaning, that
is, to build NNs with semantically significant hidden units. The other one is to
extract rules out of the hidden units.

Building NNs with no "hidden" layers (Shavlik and Towell, 1990;
Ragavan and Piramuthu, 1991)

The NN has several layers, intermediate between the symbolic attributes and
the final concept, but the structure of the layers and the meaning of each
node is well-linked to background knowledge. These systems make use of a
tree-building mechanism that allows to give a layer form to the knowledge.
In order to understand how this can be done, let us study the following ad
hoc example. Suppose that our background knowledge can be summarized
by the following five rules, and suppose that the goal of the NN to build is to
recognize concept A.
A:-B,E
D:-G,H

B:- C, D, I
E:- I,J

C:-F

Thus we ask the question A? to our background knowledge and we obtain a
proof tree for A, as shown in figure 4a, below.

A

B~'
/~" C D E

I I" /" F G H I J

Figure 4a. Proof tree for A.

~A

i~
\
F G H

Figure 4b. Structure of the associated NN.

Once this tree has been obtained, it will be used as a starting point for the
structure of a NN. For instance, the overall structure of the tree can be kept
unchanged, thus the number of hidden units is the tree depth minus two. The
existing links are kept and affected with a coefficient one at the start. Within
each level, all other possible links are also established, with a coefficient zero.
Thus, no new unit can be invented, nor a new link between two non-adjacent
levels. Figure 4b shows such a neural structure, where the thick lines are links
existing in the proof structure, and the thin lines are the new links introduced
with coefficient zero. Back-propagation is then run on this structure and,
depending on the examples, the coefficients of old links can be decreased,
and the coefficients of new links be increased.

www.manaraa.com

TEN YEARS OF ADVANCES IN MACHINE LEARNING 251

In the final network all links are between nodes loaded with semantics, thus
easy to interpret in human terms.
This approach is the one of Shavlik and Towell.
Ragavan and Piramuthu use a very similar technique, except that the initial
structure of the NN is obtained by using ID3 to build a decision tree, as
explained in section 4.1. Instead of making use of theoretical knowledge
available about the field of application, they use the same examples from
which the NN is going to learn, but in a symbolic way, in order to have
indications on the structure of the· best NN.

Extracting rules from NNs with hidden layers (Gallant, 1988; Saito
and Nakano, 1988; Fu, 1991)

This task is obviously easy when there are no hidden units. In that case, the
final decision is directly linked to the elemenu> of which it depends.
When there are hidden units, the main problem is the one of the large
combinatory explosion that takes place when all possible paths are retrieved
in order to estimate the contribution of each input to the final output. The
number of rules generated will be enormous since each layer influences all
other layers. A solution is to introduce heuristics that select more important
hidden units, and cut into the number of choices to influence the chosen
units. In (Fu, 1991), for instance, a threshold selects which units to consider,
and the combinatorics are reduced by considering only the influence of one
layer on the following, ordered from the inputs to the outputs of the NN.

5 - Learning by analogy

The analogy scheme we shall describe here is quite a classical one (Winston,
1982; Gentner, 1983; Chouraqui, 1985; Falkenhainer, Forbus, and Gentner,
1986; Carbonell, 1983, 1986; Kedar-Cabelli, 1988; Kodratoff, 1990b). Let us
suppose that we dispose of a piece of information, the base, that can be put
into the form of a doublet (A, B) in which it is known that B depends on A.
This dependency will often be causal, and it does not need to be very formal
nor strict. In the following, we shall call this relation (3. and refer to it as the
causality of the analogy. The reason for this slip of language from
dependency to causality will become clear in the following sections. Suppose
now that we find an other piece of information, the target, (A', B') that can be
put into the same form, and such that there exists some resemblance
(similarity) between A and A'. In the following, we shall call this relation (x,

and refer to it as the similarity of the analogy. Let us call 13' the causal
dependency between A' and B', and (x' the similarity between B and B', as
shown in the figure below.

www.manaraa.com

252

BASE

A

B

Y. KODRATOFF

resemblance/difference relations TARGET
____ (S_IMI_L_A_RI_T_Y.-) ____ .~ A'

ex. ~' I dependence relations
, (CAUSALITY)

<X

------------------------------.~ B'
Figure 5. The general scheme of analogy.

The analogy problem amounts to find a mlssmg part of this diagram,
knowing some others of its parts. For instance, as in Winston (1982), proceeds
as follows. The similarity <X is not given in advance, but it is a partial matching
of A and A', and B is actually the result of this partial matching, The resulting
causalities ~ are the all the causalities inside the discovered B, and one
assumes that W = ~. In that way, starting from A and A', and from a
similarity measure which is actually a process (partial matching), one
progressively discovers the causalities.

In the case of recognition and evaluation of existing analogies, or in the
famous case of case-based reasoning, there is no need to draw a difference
between similarity and causality. In that case, causality is just one more
similarity between source and target. On the contrary, causality is central to
the generation of new analogies.

As an illustration, consider the following analogy, proposed in (Russell,
1989).
From nationality(Louis, France) & nationality (Antoinette, France) &
native_Ianguage(Louis, French), Russel (1989) finds by analogy that
native_Ianguage(Antoin~tte, French). Adding new information about Louis
and Antoinette (we assume here that these characters are the royal couple sent
to the guillotine during the French revolution, thus taking Antoinette for
Marie-Antoinette), like lives_in(Louis, France) and lives_in(Antoinette,
France) will increase the similarity between Louis and Antoinette, therefore
increasing the similarity between target and base. Conversely, adding
information like male(Louis) & born_in(Louis, France) and
female(Antoinette) & born _in (Antoinette, Austria) will decrease theur
similarity. With this added information, the analogy can be written without
causality, as in figure 6.
On the contrary, as in figure 7, one can also consider that some of this
information is causal. It will allow us to find back the given analogy when
one considers that ~l = lives_in(Louis, France) and WI = lives_in(Antoinette,
France) as causalities for the fact of being native French speaker, and when

www.manaraa.com

TEN YEARS OF ADVANCES IN MACHINE LEARNING

one does not take into account that Antoinette is born in Austria.
nationality nationality
(Louis, France) (Antoinette, France)
& lives_inC & lives_in
Louis, France) ~ .. (Antoinette, France)
& born_in & born_in
(Louis, France) (Antoinette, Austria)

& ... + & ... +
native_language
(Louis, French)

Figure 6. The given analogy, without causality.

native_language
(Antoinette, French)

nationality ~ nationality
(Louis, France) ----.~ (Antoinette, France)

I pI =lives_in I J3'l=lives_in
• (Louis, France) • (Antoinette, France)

native_language
(Louis, French)

native_language
(Antoinette, French)

253

Figure 7. Inventing again the given analogy by using a causality of the form "x lives_in y" in

order to explain that "native_Ianguage(x) == language(y)".

Consider now that one adds the following information about Louis:
born_in(Louis, France). Then, the similar information about Antoinette, \3'2 =
born_in(Antoinette, Austria), leads to the analogy native_language
(Antoinette, German), or to fluent _in (Antoinette, French), depending on the
causality to be used. If \32 and \3'2 are considered as causal and \31 and \3'1 are
considered as factual, then the analogy should give
native _language(Antoinette, German).
In this analogy, one is implicitly using theorems of the kind: \Ix [born_in(x,
France) ~ native_language(x, French)] and \Ix [born_in(x, Austria) ~
native _language(x, German)].
The choice of using these theorems follows from the choice of causality. Let

us show why in three steps.
First step: Understanding causality. In the present case, the causality is \32 =
born in(Louis, France), which "explains" why native_language(Louis,
French).

www.manaraa.com

254 Y. KODRATOFF

nationality..... nationality
(Louis, France) ------.. ~ (Antoinette, France)
& lives_in & lives_in
(Louis, France) (Antoinette, France)

I ~2 =born_in I W2=bonUn + (Louis, France) + (Antoinette, Austria)

native_binguage native_binguage
(Louis, French) (Antoinette, German)

Figure 8. Inventing another analogy by using a causality of the form "x born_in y" in order to

explain "native _language(x) = language _ of(y)".

From this, we can infer that the analogy has been using ways of deducing the
result from its causality. Therefore, we have to consider theorems that have a
generalization of born_in(Louis, France) in their premise, and that have a
generalization of native _language(Louis, French) in their conclusion. In
other words, we have to consider the different ways by which one might prove
something of the form native_language(x, y) from something of the form
born_in(x, y). This may be very difficult, and the difficulty of finding the
link between the causality and its consequences may become a huge task by
itself. In the very case we are looking at presently, this inference can be done
in a single step by using the theorem 'Vx [born_in(x, France) =>
native_language(x, French)].
Second step: Using similarity. Similarity tells us that Louis in the base must
be replaced by Antoinette in the target. Therefore, we guess that the causality
in the target is W2 = born_in(Antoinette, Austria).
Third step: Combining causality and similarity. We look for theorems the
premise of which is a generalization of born _in (Antoinette, Austria), and the
conclusion of which is a ~enera1ization of native _language(x, y). Once more,
this step may be very complicated but, in this case, we find in one step that 'Vx
[born_in(x, Austria) => native_language(x, German)] is the looked for
theorem. Applying it to the premise born_in(Antoinette, Austria) leads to the
conclusion native_language(Antoinette, German), which becomes the
conclusion of our analogy, as shown in figure 8.

By changing the knowledge considered as causal, the result of the analogy
will change accordingly. In our example, it is easy to see that considering
such as, by choosing a causality of the form "x lives_in y", thus calling to
theorems such as 'Vx [lives_in(x, France) & born_in(x, France) =>
native_language(x, French)], or 'Vx [lives_in ex, France) & -,born_in(x,
France) => Jluent_in(x, French)]. then, the analogy will yield
fluent in(Antoinette, French).

www.manaraa.com

TEN YEARS OF ADVANCES IN MACHINE LEARNING 255

When creating analogies, the choice of an information as causality will orient
the invention process. When analyzing existing analogies, all kinds of
information playa role in rating the given analogy. For instance, in the case
of the given analogy above, one might well use both information
lives_in(Louis, France) and born_in(Louis, France) to rate the given analogy.
On the contrary, when creating analogies, one has to choose between the
available information which one is of causal nature, and this choice changes
the output of the analogy process. In other words, from the analysis point of
view, native _language(Antoinette, German) is as good an analogy as
Jluent_in(Antoinette, French), while from the invention point of view, they
differ in the information that has been chosen as causal. In practice, one
should always dispose of large amounts of theorems such as those
exemplified in the "Antoinette" example, above" possibly even of theorems
that contradict each other. Analogy, which contains for us a choice of
causality, allows to chose which to use.

This discussion allows to understand how case-based reasoning (CBR) works
since it takes exactly the position of recognizing an analogy as defined
above. Very elementary case-based reasoners (as seem to be the present
available shells such as CBR-REMIND, CBR-Express, and ESTEEM) use a
similarity function that does not take into account deep knowledge, while
evolved ones, such as in (Kolodner, Simpson, and Sycara, 1985; Sycara,
1990) take into account deep structural knowledge. In both cases, rather than
solving each new problem from first principles or rules, CBR accesses
previous appropriate experiences, adapts them, and re-uses them in the
current situation.
Advantages of CBR include increased efficiency because plans do not have to
be created from scratch, failure avoidance and repair using guidance from
similar previous failures, dealing with open worlds and situations not easily
formalizable, and preventing brittle system behavior.

6 • Conclusion

This paper gives a somewhat biased idea of what has been happening in
machine learning since 10 years because it presents very shortly the main
inductive techniques, it hints only at the very important topic of case-based
reasoning, and skips explanation-based learning in strong and weak theory
domains. Referring to "the Machine Learning Series," below, and to the
author's already published review papers, the reader should be able to
complete this perspective in a satisfying way. Notice, however, that no

www.manaraa.com

256 Y. KODRATOFF

complete and comprehensive review of case-based reasoning seems to be
presently available.
As it stands, it presents some of the topics that became popular during the last
few years, and that are often still a matter of narrow specialization. We hope
that the reader is now convinced that many rich combinations have been
happening during the last few years, such as the symbolic/numeric approach
to connectionism as described in section 4.7.
The field yielded a first crop in the 80's with ID3 and AQ that have been
tested upon hundreds of applications. The second crop, that of the 85's,
contains EBL and conceptual clustering. This paper shows that a third one is
coming now, with yet new ideas and systems. Everyone knows that (at least
some) learning is the key to the future development for many applications:
Here are the tools, they should be tried more often.

Acknowledgments
This worlc has been partially supported by "PRC-GRECO IA" from CNRS and
MRT and by ESPRIT project MLT, P2154. We also thank Luc De Raedt,
Katia Sycara, Derek Sleeman, and Jan Zytkow, for the use we made of some
of their unpublished material.

References

"The Machine Learning Series:"
Machine Learning: An artificial intelligence approach, Vol. 1,

Michalski R. S., Carbonell J. G., Mitchell T. M. (Eds.), Morgan Kaufmann,
Los Altos, 1983.

Machine Learning: An artificial intelligence approach, Vol. 2,
Michalski R. S., Carbonell J. G., Mitchell T. M. (Eds.) , Morgan Kaufmann,
Los Altos, 1986.

Machine Learning: An artificial intelligence approach, Vol. 3,
Kodratoff, Y., Michalski R. S. (Eds.), Morgan Kaufmann, San Mateo CA,
1990.

Angluin D., Laird P. "Learning from Noisy Examples," Machine
Learning 2, 343-370, 1988.

Bisson G. "KBG: a Generator of Knowledge Bases," in Machine
Learning: Proceedings of EWSL 91, Y. Kodratoff (Ed.), Porto, Springer
Verlag 482, pp 137-137. An extended version is published in the
Proceedings of the International Conference Symbolic Numeric, Data
Analysis and Learning, Paris 17-20 Sept. 1991, pp. 399-415.

Bratko I. (1988) Unpublished set of lectures at European Summer
School on Machine Learning, Les Arcs, France.

Bratko I., Lavrac N. (Eds) Progress in Machine Learning, Sigma
Press, Wilmslow 1987.

Buchanan, B.G., and Mitchell, T.M., "Model-Directed Learning of
Production Rules", in Waterman A., Hayes-Roth F. (eds.), Pattern-Directed

www.manaraa.com

TEN YEARS OF ADVANCES IN MACHINE LEARNING 257

Inference Systems, Academic Press, New York, 1978.
Carbonell, J.G. "Learning by Analogy: Formulating and

Generalizing Plans from Past Experience" in R.S. Michalski, J. G. Carbonell,
T. M. Mitchell (Eds.), Machine Learning: An Artificial Intelligence
Approach, Morgan Kaufmann 1983, pp. 137-159.

Carbonell, J.G. "Derivational Analogy: A Theory of Reconstructive
Problem Solving and Expertise Acquisition", in R.S. Michalski, J. G.
Carbonell, T. M. Mitchell (Eds.), Machine Learning: An Artificial Intelligence
Approach, Volume II, Morgan Kaufmann 1986, pp. 371-392.

Carbonell J.G., Gill Y. "Learning by Experimentation: The Operator
Refinement Method", in Machine Learning: An artificial intelligence
approach, Vol. 3, Kodratoff Y. & Michalski R. S., (Eds.), Morgan Kaufmann,
1990, pp. 191-213.

Carbonell J.G., Knoblock C.A., Minton S., "PRODIGY: An
Integrated Architecture for Planning and Learning," in Architectures for
Intelligence, K. VanLehn (Ed.), Erlbaum, Hillsdale NJ, 1990.

Chouraqui E. (1985) Construction of a model for reasoning by
analogy. Progress in Artificial Intelligence, Steels L., Campbell I.A. (Ed.),
Ellis Horwood, London, p.169-183.

Cox P.T., Pietrzykowski T., "Causes for Events: Their Computation
and Applications," Proceedings of the Eighth International Conference on
Automated Deduction, Oxford, 1986, Lecture Notes in Computer Science n°
230, Springer Verlag, Berlin, pp. 608-621.

De Raedt L., Bruynooghe M. Constructive induction by analogy: a
method to learn how to learn", Proceedings of the 4th European Working
Session On Learning, pages 189--200. Pitman, 1989.

De Raedt. L. "Interactive Concept-Learning, PhD thesis, Department
of Computer Science, Katholieke Universiteit, Leuven, 1991.

Dietterich, G. T., Michalski, R. S. "Inductive Learning of Structural
Descriptions: Evaluation Criteria and Comparative Review of Selected
Methods" Artificial Intelligence Journal 16, 1981, pp. 257-294.

Dietterich T. C., Hild H., Bakiri G. "A Comparative Study of 103
and Backpropagation for English Text-to-Speech Mapping," Proc. 7th ICML,
pp. 24-31, 1990.

Dietterich T. C., Bakiri G. "Error-Correcting Output Codes: A
General Method for Improving Multiclass Inductive Learning Programs,"
Proc. AAAI-91, pp. 572-577, 1991. '

Dupre J. "Probabilistic Causality: A Rejoinder to Ellery Eels,"
Philosophy of Science 57, 1990, 690-698.

Duval B., Kodratoff Y. "A Tool for the Management of Incomplete
Theories: Reasoning about explanations" in Machine Learning, Meta
Reasoning and Logics, P. Brazdil and K. Konolige (Eds), Kluwer Academic
Press pp. 135-158, 1989.

Falkenhainer, B., Forbus, K. D., Gentner, D., "The Structure
Mapping Engine", Report N° UIUCDCS-R-86-1275, DCS, Univ. of lllinois at
Urbana-Champaign, May 1986. See also Proc. AAAI-86.

Falkenhainer, B.C., "Scientific Theory Formation Through
Analogical Inference," Proc. Fourth International Workshop on Machine
Learning, June 22-25, Los Altos, CA, Morgan Kaufmann PubL, 1987, pp.
218-229.

www.manaraa.com

258 Y. KODRATOFF

Falkenhainer, B.C., and Rajamoney, S., "The Interdependencies of
Theory Formation, Revision, and Experimentation", Proc. Fifth International
Conference on Machine Learning, June 12-14, Los Altos, CA, Morgan
Kaufmann Publ., 1987, pp. 353-366.

Falkenhainer, B.C., and Michalski, R.S., "Integrating Quantitative
and Qualitative Discovery in the ABACUS System," in Machine Learning: An
artificial intelligence approach, Vol. 3, Kodratoff, Y., Michalski R. S. (Eds.),
Morgan Kaufmann, San Mateo CA, 1990, pp. 153-190.

Fisher D. H. "Knowledge Acquisition Via Incremental Conceptual
Learning," Machine Learning 2, 139-172, 1987.

Fisher D. H., McKusick K. B. "An Empirical Comparison of ID-3
and Back-Propagation", Proc. IJCAI-89, pp. 788-793, 1989

Forbus, K.D., "Qualitative Process Theory", in D.G. Bobrow (ed.),
Qualitative Reasoning about Physical Systems, Cambridge, MA: MIT Press,
1984.

Franova M. "Fundamentals for a new methodology for inductive
theorem proving: CM-construction of atomic formulae; in: Y. Kodratoff,
(ed.): Proceedings of the 8th European Conference on Artificial Intelligence;
August 1-5, Pitman, London, UK, 1988, 137-141.

Fu L. "Rule Learning by Searching on Adapted Nets", Proc. AAAI-
91, pp. 590-595, 1991.

Gallant S. I. "Connectionist Expert Systems", Com. ACM 31, 152-
169, 1988.

Gentner, D., "Structure-Mapping: A theoretical Framework for
Analogy", Cognitive Science 7, pp. 155-170, 1983.

Gluck M.A., Corter J.E. "Information uncertainty, and the utility of
categories", Proc. Annual Conf. Cognitive Sci. Soc., pp. 283-287, Lawrence
Elbaum, Irvine CA, 1985.

Greiner R., Elkan C. "Measuring and Improving the Effectiveness of
Representations", Proc. IJCAI-91, pp. 518-524, 1991.

Guiho G. "Automatic Programming Using Abstract Data Types; in
Proceedings of the Eight International Joint Conference on Artificial
Intelligence; August, Karlsruhe, 1983, I-to.

Kedar-Cabelli, S. "Toward a Computational Model of Purpose
directed Analogy", in Analogica, Prieditis A. (Ed), Pitman, London, 1988, pp.
89-107.

Kodratoff Y., "Generalizing and Particularizing as the Techniques of
Learning," Computers and Artificial Intelligence 2, 1983,417-441.

Kodratoff Y. "An Introduction to Machine Learning; Pitman,
London, 1988.

Kodratoff Y., Apprentissage: Science des explications ou science des
nombres?, Annales Telecom. 44, 1989, pp. 251-264.

Kodratoff, Y .• Chapter 8: Machine Learning, in Engineering, Adeli
(Ed), pp. 226-255, 1990a.

Kodratoff Y. "Combining Similarity and Causality in Creative
Analogy" Proc. ECAI-90, Carlucci Aiello L. (Ed.), Pitman, pp. 398-403,
1990b.

Kodratoff Y., Diday E. (Eds) Induction symbolique et numerique a
partir des donnees, CEPADUES edition, Toulouse, 1991.

Kodratoff Y. "Characterising Machine Learning Programs: A

www.manaraa.com

TEN YEARS OF ADVANCES IN MACHINE LEARNING 259

European Compilation", in Artificial Intelligence, Research Directions in
Cognitive Science, European Perspectives, Vol. 5, D. Sleeman and N. O.
Bernsen (Eds), Lawrence Erlbaum, 1992, pp.79-144.

Koehn, B., Zytkow, I.M., "Experimenting and Theorizing in Theory
Fonnation", in Z. Ras (ed.), Proceedings of the International Symposium on
Methodologies for Intelligent Systems, Knoxville, TN, 1986, ACM SIGART
Press, pp. 296-307.

Kolodner, I.L., Simpson, R.L., Sycara, K. "A Process Model of Case
Based Reasoning in Problem Solving", Proc. IlCAI, pp. 284-290, 1985.

Kulkarni, D., and Simon, H.A., "The Processes of Scientific
Discovery: The Strategy of Experimentation", Cognitive Science, Vol. 12,
1988, pp. 139-175.

Laird 1. E., Newell A., Rosenbloom P. L. (1986) Universal
Subgoaling and Chunking: The Automatic Generation and Learning of Goal
Hierarchies, Kluwer, Dordrecht.

Laird 1. E., Rosenbloom P. L., Newell A. "Soar: An Architecture for
General Intelligence", AI Journal 33, 1987, 1-64.

Langley, P.W., "Data-driven Discovery of Physical Laws", Cognitive
Science, 5, 1981, pp. 31-54.

Langley, P., Zytkow, J.M., Simon, H.A., Bradshaw, G., "The Search
for Regularity: Four Aspects of Scientific Discovery", in Machine Learning:
An Artificial Intelligence Approach, Vol. 2, Michalski R.S., Carbonell J.G.,
and Mitchell T.M. (Eds.), Morgan Kaufman, Los Altos CA 1986, pp. 425-
470.

Langley, P., Simon, H.A., Bradshaw, G., Zytkow J.M., Scientific
Discovery: An Account of the Creative Processes, MIT Press, Boston, MA,
1987.

Lenat, D.B., "Automated Theory Fonnation in Mathematics," Proc.
Fifth International Joint Conference on Artificial Intelligence, 1977, pp. 833-
842.

Lenat, D.B., "The Role of Heuristics in Learning by Discovery:
Three Case Studies", in Michalski R.S., Carbonell J.G., and Mitchell T.M.
(Eds.), Machine Learning: An Artificial Intelligence Approach, Tioga Press,
Palo Alto, CA, 1983.

Manna Z., R. Waldinger Z. "A Deductive Approach to Program
Synthesis; ACM Transactions on Programming Languages and Systems, Vol.
2., No.1, January, 1980,90-121.

Michalski R. S. (1983) "A Theory and a Methodology of Inductive
Learning", in Machine Learning: An Artificial Intelligence Approach, R.S.
Michalski, J.G. Carbonell, T.M. Mitchell (Eds.), Morgan Kaufmann, Los
Altos, pp 83-134.

Michalski R. (1984) "Inductive learning as rule-guided
transfonnation of symbolic descriptions A theory and implementation", in
Automatic Program Construction Techniques, Biennann, Guiho and
Kodratoff editors, Macmillan Publishing Company, New York, pp. 517-552.

Michalski, R. S., Kodratoff, Y. "Research in Machine Learning:
Recent progress, Classification of Methods, and Future Direction" in Machine
Learning: An Artificial Intelligence Approach, Volume Ill, Y. Kodratoff and
R.S. Michalski (Eds.), Morgan Kaufmann, San Mateo, 1990, pp. 3-30.

Mooney R., Shavlik J.,' Towell G., Grove A. "An Experimental

www.manaraa.com

260 Y. KODRATOFF

Comparison of Symbolic and Connectionist Learning Algorithms" Proc.
IJCAI-89, pp. 775-780. Also in Readings in Machine Learning, Shavlik J. W.
and Dietterich T. G. (Eds), Morgan-Kaufmann, San Mateo, CA 1990, pp.
171-176.

Morik K. "Acquiring Domain Models", in Knowledge Acquisition
Tools for Expert Systems 2, Boose J. and Gaines B. (Eds), Academic Press,
1988.

MouIet M. "Using accuracy in law discovery", Fifth European
Working Session on Learning, Porto, mars 1991, Springer Verlag, pp. 118-
136.

Muggleton S., Buntine W., "Machine Invention of First-Order
Predicates by Inverting Resolution," Proc. 5th Internntl. Conf. on Machine
Learning, Morgan Kaufmann CA 1988, pp. 339-351.

Peirce C. S. "Elements of Logic" in Collected Papers of Charles
Sanders Peirce (1839-1914), C.H. Hartshone and P. Weiss (Eds) , Harvard
University Press, Cambridge MA, 1965.

Priedetis A. (1988) (editor) Analogica Pitman, London.
Quinlan J.R (1983) "Learning Efficient Classification Procedures

and their Application to Chess End Games" in Machine Learning: An
Artificial Intelligence Approach, RS. Michalski, J.G. Carbonell, T.M. Mitchell
(Eds.), Morgan Kaufmann, Los Altos, pp 463-482

Quinlan J.R. "Determinate Literals in Inductive Logic
Programming," Proceedings of the twelfth IJCAI, Morgan Kaufmann
Publisher, Inc, San Mateo, CA, Volume 2, pages 746 a 750, 1991.

Ragavan H., Piramuthu S. "The Utility measure of Feature
Construction for Back-Propagation," Proc. IJCAI-91, pp. 844-848, 1991.

Rajamoney, S.A., "Explanation-Based Theory Revision: An
Approach to the Problems of Incomplete and Incorrect Theories," Ph.D.
thesis, University of illinois at Urbana-Champaign, 1988.

Rose, D., Langley, P., "Chemical Discovery as Belief Revision",
Machine Learning 1, 1986, pp. 57-95.

Rouveirol C, Puget J.F. "Beyond inversion of
resolution,"Proceedings of the 7th International Conference on Machine
Learning, Morgan Kaufmann, 1990.

Rouveirol C. "Semantic Model for Induction of First Order
Theories," Proceedings of the twelfth IJCAI, Morgan Kaufmann Publisher,
Inc, San Mateo, CA, Volume 2, pp. 685 a 690, 1991.

Russell S.J. The Use of Knowledge in Analogy and Induction,
Pitman, London 1989.

Saito K., Nakano R "Medical Diagnostic Expert Systems based on
PDP Model", Proc. IEEE Conf. on Neural Networks, pp. 255-262, 1988.

Sato M. "Towards a Mathematical Theory of Program Synthesis;
Proc. 6th IJCAI, Tokyo, 1979. 757-762.

Schank R C. Explanation Patterns: Understanding mechanically
and Creatively, Ablex Publishing Company, (1987).
Schank R. C., Abelson R. P., Scripts, Plans, Goals, and Understanding,
Lawrence Erlbaum, Hillsdale, N.J. (1977).

Schank R. C., Kass A. "Explanations, Machine Learning, and
Creativity", in Machine Learning: An artificial intelligence approach, Vol. 3,
Kodratoff Y. & Michalski R. S., (Eds.), Morgan Kaufmann, 1990, pp. 31-48.

www.manaraa.com

TEN YEARS OF ADVANCES IN MACHINE LEARNING 261

Shapiro E., Algorithmic Program Debugging, The MIT press, 1983.
Shavlik I.W., Towell G.G. "An Approach to Combining

Explanation-Based and Neural Learning Algorithms" in Readings in Machine
Learning, Shavlik I. W. and Dietterich T. G. (Eds) , Morgan-Kaufmann, San
Mateo, CA 1990, pp. 828-840.

Sleeman D. H., Stacey M.K., Edwards P., Gray N.A.B. "An
Architecture for Theory-Driven Scientific Discovery", Proc. EWSL 89, Morik
K. (Ed.), Pitman 1989, pp. 11-24.

Smith D. R. "Top-Down Synthesis of Simple Divide and Conquer
Algorithm; Artificial Intelligence, vol. 27, no. 1, 1985,43-96.

Stepp R.E, Michalski R.S. (1983) "Learning from observation:
Conceptual Clustering" in Machine Learning: An Artificial Intelligence
Approach, R.S. Michalski, I.G. Carbonell, T.M. Mitchell (Eds.), Morgan
Kaufmann, Los Altos, pp 331-363

Suppes P. "Conflicting Intuitions about Causality," in Midwest
Studies in Philosophy IX, Causation and Causal Theories, University of
Minnesota Press, Minneapolis 1984, pp. 151-168.

Sycara, K. "Persuasive Argumentation in Negotiation", Theory and
Decision, Vol. 28, No.3, pp. 203-242, May 1990.

Tecuci G., Kodratoff Y. "Apprenticeship Learning in Imperfect
Domain Theories," in Machine Learning: An artificial intelligence approach,
Vol. 3, Kodratoff, Y., Michalski R. S. (Eds.), Morgan Kaufmann, San Mateo
CA, 1990, pp. 514-552.

Valiant L. G. "A Theory of the Learnable", Com. ACM 27, 1134-
1142, 1984.

Vrain C. "OGUST: A System that Learns Using Domain Properties
Expressed as Theorems", in Machine Learning, an Artificial Approach,
volume III, Y. Kodratoff, R. Michalski (Eds) , Morgan Kaufmann Publishers,
p. 360-382, 1990.

Weiss S.M., Kapouleas I. "An Empirical Comparison of Pattern
Recognition, Neural Nets, and Machine Learning Classification Methods"
Proc. IJCAI-89, pp. 781-787. Also in Readings in Machine Learning, Shavlik
J. W. and Dietterich T. G. (Eds), Morgan-Kaufmann, San Mateo, CA 1990,
pp. 177-183.

Winston P. H. (1982) "Learning New Principles from Precedents
and Exercises", Al]ournaI19, 321-350.

Zytkow, I.M., Simon, H.A., "A Theory of Historical Discovery: The
Construction of Componential Models," Machine Learning, 1, 1986, pp. 107-
36.

Zytkow, I.M., "Combining Many Searches in the FAHRENHEIT
Discovery System", Proc. 4th International Workshop on Machine Learning,
Los Altos, CA, Iune 1987, Morgan Kaufmann Publ., pp. 281-287.

Zytkow, I.M., Erickson, M., "Tactical Manager in a Simulated
Environment", in Ras Z. and Zemankova, M. (eds.), Methodologies for
Intelligent Systems, Elsevier Science Publ., 1987, pp. 139-147.

Zytkow I.M., "Deriving Basic Laws by Analysis of Processes and
Equations," in Langley, P. and Shrager I. (eds.), Computational Models of
Scientific Discovery, 1989.

www.manaraa.com

DESIGNING LOGIC PROGRAMMING LANGUAGES

J.W. LLOYD
Department of Computer Science,

University of Bnstol,
University Walk, Bristol, BS8 ITR, U.K.

Abstract. The design of logic programming languages is discussed with emphasis on two aspects:
improving the declarative semantics and improving the software engineering fa.cilities of current
languages. These discussions are illustrated with example programs in the language GOdel, which
is under development at Bristol University. The main design aim of GOdel is to have functionality
and expressiveness similar to Prolog, but to have greatly improved declarative semantics compared
with Prolog. The paper concludes with some remarks about future directions for the design of
logic programming languages.

1. Design Issues for Logic Programming Languages

In this section, we discuss various issues for the design of logic programming lan
guages. We begin this discussion by giving the underlying ideas of logic program
ming and declarative programming.

The starting point for the programming process is the particular problem that
the programmer is trying to solve. The problem is then formalised using a language
which we assume here to be a (typed) first order language (see (Ll087)) includ
ing a set of constants, functions, propositions and predicates. More precisely, the
problem is formalised as an interpretation (called the intended interpretation) of
this language. The intended interpretation specifies the domain of the problem,
the meaning of the constants and functions in this domain, and the meaning of
the propositions and predicates. In practice, the intended interpretation is rarely
written down precisely, although in principle this should always be possible.

Now, of course, it is taken for granted here that it is possible to capture the
intended application by a first order interpretation. Not all applications can be
(directly) modelled this way and for such applications other languages and for
malisms may have to be employed. However, a very large class of applications can
be modelled naturally by means of a first order interpretation. In fact, this class is
larger than is sometimes appreciated. For example, it might be thought that such
an approach cannot (directly) model situations where a knowledge base is changing
over time. Now it is true that the intended interpretation of the knowledge base is
changing. However, the knowledge base should properly be regarded as data to var
ious meta-programs, such as query processors or assimilators. Thus the knowledge
base is represented as a ground term at the meta-level, and can be accessed and
changed by the assimilator, for example. The meta-programs have fixed intended
interpretations which fits well with the setting for declarative programming given
above.

263

P. Dewilde and J. Vandewalle (eds.), Computer Systems and Software Engineering, 263-285.
© 1992 Kluwer Academic Publishers.

www.manaraa.com

264 I. W.LLOYD

Based on the intended interpretation, the logic component of a program is then
written. This logic component is a particular kind of (typed) first order theory
which is suitably restricted so as to admit an efficient theorem proving procedure.
Commonly, this theory is the completion (Ll087) of a collection of program state
ments. It is crucial that the intended interpretation be a model for the completion
of the logic component of the program. This is because computed answers, which
are usually computed by SLDNF-resolution and are known to be correct by the
soundness of SLDNF-resolution (Ll087), therefore give instantiated goals which
are true in the intended interpretation. Ultimately, the programmer is interested
in computing truth in the intended interpretation.

Having written a correct logic component of a program, the programmer then
turns to the control component. Usually, the computation rule is partly specified by
declarations and the pruning of the search tree is specified by a pruning operator,
such as commit or cut. To some extent, it is possible to relieve the programmer of
responsibility for the control aspects by the use of preprocessors which automat
ically generate appropriate control. Note that, in practice, control considerations
may cause a programmer to go back and rewrite the logic component to improve
the efficiency of a program. In any case, a desirable property of the control dec
larations of a program is that they can he stripped away and what remains is a
correct logic component of the program.

The above discussion can be summarised by stating that the central thesis of
logic programming is that

a program is a (first order) theory, and
computation is deduction from the theory.

It is crucially important that programs can be understood directly as theories.
When this is the case, they have simple declarative semantics and can be much
more easily verified, transformed, debugged, and so on. Note that because logic
programs have a declarative semantics, logic programming is a form of declar
ative programming and shares all the advantages that declarative programming
provides.

As well as having a declarative semantics, logic programs must also have avail
able some basic software engineering facilities. The two most important such fa
cilities are a type system and a module system. We discuss each of these in turn.

The reasons for having types in logic programming languages are well known.
The major reason is for knowledge representation. Intended interpretations in most
logic programming applications are typed and hence using a typed language is the
most direct way of capturing the relevant knowledge in the application. Also, the
extra information given by the language declarations of a type system can be used
by a compiler to produce more efficient code. Furthermore, type declarations can
help to catch programming errors. For example, in an untyped language, simple
typographical errors often lead to bizarre program behaviour which can usually
only be identified by laborious tracing of the program. In contrast, in a typed
language, such errors often lead to syntax errors which can be caught by the

www.manaraa.com

DESIGNING LOGIC PROGRAMMING LANGUAGES 265

compiler. It is nearly always easier to correct an error caught by the compiler than
it is to discover and correct an error that leads to wrong program behaviour. Our
experience with the G6del type system (see below) supports the contention that it
greatly decreases the effort required for program development and greatly increases
the likelihood of correctness of programs compared with untyped languages.

There are two kinds of type systems in logic. The first comes from so-called
type theory which applies to higher order logics. This is the foundation for the
type systems of functional languages. The other kind of type system studied in
logic is called many-sorted logic (End72), (Ll087) and is relevant mainly for first
order logic. It is many-sorted logic which provides the foundation for type facilities
in (first order) logic programming languages. In the following, to conform to the
usual terminology of programming languages, we often refer to a sort as a type.

Many-sorted logic generalises ordinary unsorted first order logic in that it has
sort declarations for the variables, constants, functions, and predicates in the lan
guage. We can think of ordinary unsorted logic as a special case in which there
is only one sort. In the general case, there are a number of (possibly count ably
infinitely many) sorts. Each constant, for example, is then specified as having a
particular sort. There is also a natural definition of what it means for an expres
sion to be a well-formed formula in the many-sorted language. Proof procedures
for many-sorted logic can then be defined by a straightforward generalisation of
those for unsorted logic. For the declarative semantics, we have to generalise the
usual notions of interpretation, logical consequence, and so on.

However, a many-sorted logic alone is not sufficiently flexible for a type system
in a logic programming language. The reason is that we want to write predicates
which take a variety of types of arguments. For example, the usual append predicate
will normally be required to append lists each of whose elements has the same fixed
but arbitrary type. For this reason, logic programming languages should allow a
form of polymorphism, called pammetric polymorphism, familiar from functional
programming languages. Parametric polymorphism necessitates the introduction
of type variables, which range over all types. By this means, a polymorphic version
of append, for example, can be written in a similar way to the functional languages.

Type systems can be based on even richer logics as well. For example, it is com
mon to use an order-sorted logic instead of a many-sorted one. Roughly speaking,
an order-sorted logic allows the various domains to overlap instead of being dis
joint as for a many-sorted logic. Order-sorted logic has greater expressive power
than many-sorted logic, but can have extra implementation difficulties compared
with many-sorted logic.

Next we briefly discuss module systems. The usual software engineering advan
tages of a module system are well known. In its most basic form, a module system
simply provides a way of writing large programs so that various pieces of the pro
gram don't interfere with one another because of name clashes and also provides a
way of hiding implementation details. A satisfactory module system can be based
on these standard ideas and thus provide facilities for importation, exportation,

www.manaraa.com

266 J. W.LLOYD

and data-hiding. More powerful module systems can be based on providing an al
gebra of operations on modules, for example, taking the "union" or "intersection"
of two modules. Such module systems seem mostly to be at the research level a.t
the moment, although they can be expected to be important in pra.ctice in the
future, especia.lly when software reuse is more common.

Now to what extent does Prolog, which is by far the most commonly used logic
programming language, satisfy the above requirements? Prolog has proved to be
a great success in a wide variety of application areas. This success is undoubtedly
due to the fact that Prolog is high level, expressive, efficient, and practical. Pro
log's importance and widespread use is well justified by these properties. However,
Prolog's semantics (and by Prolog, we mean the practical programming language
as it is embodied in currently available Prolog systems, not the idealised pure sub
sets studied in (11087), for example) is much less satisfactory. The problems with
the semantics are numerous and well known: the lack of occur check, the use of
unsafe negation, the use of non-logical predicates, such as var, nonvar, assert, and
retmct, the undisciplined use of cut, and so on. These so-ca.lled "impure" aspects
of Prolog cause many practical Prolog programs to have no declarative semantics
at all and to have unnecessarily complicated procedural semantics. This means
that the (systematic) construction, verification, transformation, optimisation, and
debugging of many Prolog programs is extremely difficult. Furthermore, Prolog
does not have a type system and many Prolog systems have no module system or,
at best, a primitive and unsatisfactory one. The conclusion is clear: Prolog is very
far from achieving the ideals for a logic programming language and much work on
the design of logic programming languages needs to be done.

2. Facilities of Logic Programming Languages

Various facilities which might be provided by a logic programming language include
the following:

types
modules
control declarations
pruning
met a-programming
constraint solving
parallelism
higher-order
ob ject-oriented
functional
large knowledge bases

We now discuss each of these facilities in turn. (We make no attempt to give
complete references for each of these facilities. Instead, we refer the reader to

www.manaraa.com

DESIGNING LOGIC PROGRAMMING LANGUAGES 267

proceedings of recent International and North American Conferences on Logic
Programming, which contain many relevant papers.)

We have already discussed types and modules, so we now turn to control decla
rations. Prolog has a strict left to right computation rule. However, it is now widely
appreciated that this rule is too rigid. To express more flexible computation rules,
many Prolog systems provide control declarations. One of the most influential sys
tems has been NU-Prolog (TZ88), which provides when declarations. These delay
a call to a procedure until certain conditions are satisfied, typically that one or
more arguments are non-variables or are ground.

It may seem odd to regard pruning as desirable facility of a logic program
ming language because pruning clearly compromises the declarative semantics of
a program. However, the conclusion of (HLS90) is that pruning is useful and ac
ceptable provided the pruning operator(s) provided has certain properties. Prolog
uses the cut as its pruning operator. However, cut has a number of semantic prob
lems, which were discussed in detail in (HLS90). The first of these problems is
that cut, at least as it is employed in existing Prolog systems, allows considerable
uncertainty about what the underlying logic component of the program is. This
is because programmers can exploit the sequential nature of cut to leave "tests"
out and when this is done the logic component of the program cannot be obtained
by simply removing all the cuts from the program. Furthermore, there is no con
vention for systematically putting back the omitted tests so as to define the logic
component precisely. The second problem with cut is that its use, in the presence of
negation, can be unsound, in the sense that a computed answer may not be correct
with respect to the completion of the logic component of the program. The third
problem is that the class of programs containing cut is not closed under program
transformations. For these reasons and because the commit of the concurrent logic
programming languages (Sha89) has better semantics, it seems preferable to base
pruning on the commit of the concurrent languages.

Next we turn to meta-programming facilities. The essential characteristic of
meta-programming is that a meta-program is a program which uses another pro
gram (the object program) as data. Meta-programming techniques underlie many
of the applications of logic programming. For example, knowledge base systems
consist of a number of knowledge bases (the object programs), which are ma
nipulated by interpreters and assimilators (the meta-programs). Other important
kinds of software, such as debuggers, compilers, and program transformers, are
meta-programs.

However, in spite of the fact that meta-programming techniques are widely used,
the meta-programming facilities provided by most currently available Prolog and
other logic programming systems are by no means satisfactory. For example, im
portant representation (that is, naming) and semantic issues are normally glossed
over, since most currently available Prolog systems do not make a clear distinction
between the object level and meta-level, and do not provide explicit language facili
ties for representation of object level expressions at the meta-level. A consequence

www.manaraa.com

268 J. W.LLOYD

of the fact that Prolog doesn't handle the representation requirements properly
is that it is not possible to (directly) understand most Prolog meta-programs as
theories and hence they do not have a declarative semantics. The most obvious
symptom of this is with var, which has no declarative semantics at all in Prolog.
Within the framework of the appropriate representation (HL89), a meta-program
is a (typed) first order theory and the meta-logical predicates of Prolog, such as
var, nonvar, and so on, have declarative counterparts.

Meta-programs are often required to manipulate the representations of object
programs, creating new object program representations dynamically. For example,
a partial evaluator and a program transformer both do this. To do this declar
atively, we need one further idea, which is that object programs should be rep
resented not as meta-programs, but instead as meta-level terms (BK82). Using
this idea together with the ground representation, it is straightforward to give
appropriate definitions for declarative counterparts of the dynamic meta-logical
predicates of Prolog, such as assert and retract (HL88).

There are two basic representations for meta-programming, the non-ground and
the ground representation (HL89). The main difference between them is in the way
they handle the representation of object level variables. In the non-ground repre
sentation, an object level variable is represented by a meta-level variable and in the
ground representation by a ground meta-level term. This seemingly small difference
has significant consequences. Indeed, it turns out that the ground representation
is the one that is needed to provide declarative replacements for Prolog'S var, non
var, and so on, and that the non-ground representation cannot achieve this at all.
Thus the ground representation is easily the more important of the two represen
tations. In fact, the non-ground representation seems useful mostly for the vanilla
(Prolog-in-Prolog) interpreter and various extensions of it. As soon as, for exam
ple, we want to do any significant manipulation of meta-level terms representing
object level expressions, we must use the ground representation. This means that
most of the important uses of meta-programming, such as compiling, transforming,
partially evaluating, and debugging, will require the ground representation.

Constraint logic programming has become very important over the last couple
of years, for the reason that it provides a simple way of solving many problems in
operations research, for example, for which the only approach in the past was to
wri te large and complex Fortran (or similar) programs. Instead, constraint logic
programming gives programmers the ability to solve substantial constraint prob
lems with comparatively little programming effort. The reason is that much of the
sophisticated control needed to solve a constraint problem is built into the con
straint language and, therefore, to a large extent programmers only have to write
the logic of the problem and can leave the control to the system. The domains cov
ered by constraint systems include the integers, rationals, and the booleans. Con
straint logic programming languages currently available include CHIP (Dv HS*88),
Prolog III (CoI90), and CLP(R) (JL87).

www.manaraa.com

DESIGNING LOGIC PROGRAMMING LANGUAGES 269

Parallelism is naturally a major issue in language design. The approaches to
this can be roughly classified as to whether the parallelism is implicit or explicit.
In the implicit approach, the parallelism is not explicitly present at all at the lan
guage level and all the effort goes into running programs in an efficient a way as
possible on a parallel machine by exploiting AND- or OR-parallelism, or both. For
example, much of the work on building parallel implementations of Prolog uses this
approach. (See, for example, (SWY91a) and (SWY91b).) In the other approach,
the parallelism is explicit at the language level. For example, concurrent logic
languages (Sha89) have annotations and/or rules defining synchronization and
communication, which a programmer can exploit for particular purposes. These
languages are not extensions of Prolog since they give up some of Prolog'sfacil
ities, such as backtracking and negation. However, they do provide facilities that
Prolog does not have, such as the ability to control communication and synchro
nisation between concurrent processes. The concurrent languages have achieved
considerable prominence over the last five years. For example, a concurrent logic
programming language, called KL1, is the system language for the ICOT parallel
inference machine.

The two families of languages (the Prolog-like ones and the concurrent ones)
have developed somewhat independently during the 1980's. However, there now
seems the strong chance that the two families can be unified by means of the An
dorra principle. This principle is that deterministic goals (that is, those for which
at most one clause matches) should be selected first and should be run in AND
parallel mode. Only when there are no deterministic goals is a non-deterministic
goal chosen and a choice point created. Many researchers believe that it is possible
to design logic programming languages which encompass both the Prolog-like lan
guages and the concurrent languages. (See, for example, (SWY91a), (SWY91b),
(HB88), and (Nai88).) This prospect is indeed an attractive one.

Another interesting research area is that of higher-order facilities, as in the lan
guage A-Prolog (NM88). Such facilities provide great expressive power for certain
applications, although their implementation can be problematical (for example,
higher-order unification is undecidable). While there have been a number of im
portant experiments in higher-order logic programming languages, research still
appears to be at the stage of trying to determine just exactly which higher-order
logics are the most useful for this purpose and exactly which language features
should be provided.

A major trend in programming languages, not just logic programming lan
guages, in recent years has been the introduction of object-oriented features. In
many respects, a logic programming language naturally provides many of the fea
tunis one would expect of an object-oriented language. However, there seems to
be no consensus on what facilities an object-oriented logic programming language
should actually provide. Furthermore, while there have been a number of attempts
at designing object-oriented logic programming languages, none have achieved
widespread use so far.

www.manaraa.com

270 J. W.LLOYD

There have also been numerous attempts to combine logic and functional pro
gramming. Combining the two paradigms has obvious attractions, but there seem
to be many ways to do this and so far there does not appear to be any consensus
about which way is best.

The final facility we discuss here is concerned with the handling of large knowl
edge bases. Logic programming languages naturally provide the kernel of a knowl
edge base system, since they make available a query processor and, if properly
designed, have the necessary meta-logical facilities for handling knowledge bases.
However, special difficulties arise if the knowledge bases become large. In this case,
the system requires indexing facilities for efficient accessing of knowledge bases and
query optimization techniques for efficient answering of queries. Furthermore, if the
knowledge base system is to be used concurrently by many users, then database
concurrency control techniques need to be implemented. It is likely that other fa
cilities, such as rollback and recovery from errors, will also be needed. There are a
number of experimental deductive database systems around the world, but so far
these have had very little impact on the commercial database area.

Logic programming language design is currently an area of intense interest
and activity, and this section has provided a brief overview of this. In the next
few sections, we give an introduction to one particular language currently being
developed. In the second last section, the discussion will return to more general
issues and some remarks made about future directions for this research.

3. Godel

The main design aim of G6del (HL91) is to have functionality and expressiveness
similar to Prolog, but to have greatly improved declarative semantics compared
with Prolog. Godel is intended to have the same relation to Prolog as Pascal does
to Fortran. Fortran was one of the earliest high-level languages and suffered from
a lack of understanding at that time of what were good programming language
features. In particular, it had a meagre set of data types and relied on the goto
for control. Pascal, which was introduced 10 years later, benefitted greatly from
a considerable amount of research into programming language design. In particu
lar, Pascal had a rich set of data types and relied on structured control facilities
instead of the goto. Similarly, Prolog was designed at the birth of logic program
ming before researchers had a clear understanding of how best to handle many
facilities. Consequently, these facilities compromised its declarative semantics. In
the period since Prolog first appeared, various research projects have shown how
to design logic programming languages with better software engineering facilities
and greatly improved declarative semantics with all the well-known advantages
that these bring. The aim was to exploit this research in the design of Godel.

The declarative nature of G6del programs has a number of important practi
cal consequences. One is that Godel more easily allows a parallel implementation.
Godel programs can also be debugged by the very attractive declarative debug-

www.manaraa.com

DESIGNING LOOle PROORAMMING LANGUAGES 271

ging techniques. which are not useful, in practice, for Prolog programs. More formal
methods of proving program correctness are also greatly facilitated in declarative
programming languages such as G6del. Finally, the fact that G6del meta-programs
are declarative makes some desirable applications possible. One of these is to build
a WAM-like compiler for G6del by partially evaluating a partial evaluator with
respect to an interpreter (which uses WAM-like data structures during interpreta
tion) as input. At the next level, one can obtain a compiler-generator by partial
evaluating a partial evaluator with respect to itself as input. Both these applica
tions rely crucially on being able to build self-applicable partial evaluators. No
effective self-applicable partial evaluator written in Prolog has ever been built and
the prospects for building such a program seem very slim indeed. However, since a
partial evaluator in G6del is declarative, carrying out the same task in G6del, while
difficult, seems eminently achievable. We expect the benefits of the declarative na
ture of G6del to become evident partly through the appearance of self-applicable
partial evaluators and similarly sophisticated programs over the next couple of
years.

The main facilities provided by G6del are as follows:
types
meta-programming
control

control declarations
. constraint solving
. pruning operator
modules
input/output

We now discuss in some detail the type, module, and meta-programming facilities
of G6del.

4. The G6del Type System

The G6del type system is based on many-sorted logic with parametric polymor
phism. We first discuss the many-sorted aspect ((End72), (Llo87)) of the type sys
tem. Consider module Mi below which defines the predicates Append and Append3
for appending lists of days of the week. Note that variables are denoted by identi
fiers beginning with a lower case letter and constants by identifiers beginning with
an upper case letter.

Language declarations begin with one of the keywords BASE, CONSTRUCTOR,
CONSTANT, FUNCTION, PROPOSITION, or PREDICATE. These declarations declare the
symbols of the language, which belong in one of the categories: bases, constructors,
constants, functions, propositions, and predicates. In module Mi, the language
declaration beginning with the keyword BASE gives the types of the many-sorted
language of the module. It declares Day and ListOfDay to be bases, which are the
only types of the language. (More complicated types will be introduced shortly.)

www.manaraa.com

272

MODULE

BASE

CONSTANT

FUNCTION
PREDICATE

M1.

Day, ListOfDay.

Nil : ListOfDay;
Monday, Tuesday, Wednesday, Thursday, Friday,
Saturday, Sunday: Day.
Cons : Day * ListOfDay -> ListOfDay.
Append : ListOfDay * ListOfDay * ListOfDay;
Append3 : ListOfDay * ListOfDay * ListOfDay *

ListOfDay.

Append(Nil,x,x).
Append(Cons(u,x),y,Cons(u,z» <

Append(x,y,z).

Append3(x,y,z,u) <
Append(x,y,w) t
Append(w,z,u).

I. W.I..LOYD

The next three declarations declare the constants, functions, and predicates of the
language. The first part of the CONSTANT declaration declares Nil to be a. constant
of type ListOfDay. The second part declares Monday, Tuesday, etc., to be constants
of type Day. The FUNCTION declaration declares Cons to be a. binary function which
maps a tuple of arguments, where the first argument is of type Day and the second
argument is of type ListOfDay, to an element of type ListOfDay. The PREDICATE
declaration declares Append to be a ternary predicate each of whose arguments
has type ListOfDay. It also declares Append3 to be a quaternary predicate each
of whose arguments has type ListOfDay. Statements and goals are written in the
language defined by the language declarations.

Module M1 forms a complete Godel program on its own. A typical goal for this
program is as follows.

<- Append3(x,y,z,Cons(Monday, Cons(Tuesday,Cons(Wednesday,Nil»».

Next we introduce constructors using module M2, which is a variation of module
M1. The main difference between the two modules is that in module M2 a unary
constructor List has been declared. From the base Day and the constructor List,
the set of all types of the language is obtained by forming all "ground terms" from
the "constant" Day and the "function" List. Thus the types of the language are
Day, List(Day), List(List(Day»,

www.manaraa.com

DESIGNING LOGIC PROGRAMMING LANGUAGES

MODULE

BASE
CONSTRUCTOR

CONSTANT

FUNCTION
PREDICATE

M2.

Day.
List/1.

Nil : List(Day);
Monday, Tuesday, Wednesday, Thursday, Friday,
Saturday, Sunday: Day.
Cons: Day * List(Day) -> List(Day).
Append: List(Day) * List(Day) * List(Day);
Append3 : List(Day) * List(Day) * List(Day) *

List(Day).

Append(Nil,x,x).
Append(Cons(u,x),y,Cons(u,z» <

Append(x,y,z).

Append3(x,y,z,u) <
Append(x,y,w) i;

Append(w,z,u).

273

All bases and constructors1 of the language must be declared. If there is no
constructor, then the set of all types is just the set of all bases. If at least one
constructor is declared, then the set of all types is obtained by applying the above
construction using the bases as "constants" and the constructors as "functions" of
the appropriate arity. For example, if a base People were declared in addition to
those bases declared in module M2, then the set of all types would be Day, People,
List(Day), List(People),List(List(Day»,List(List(People»,

Next we introduce the second aspect of the type system, which is parametric
polymorphism. It is common for a programmer to want to write a definition of a
predicate for which the arguments of the predicate can have a variety of types. For
example, the Append predicate is normally written so that it can append lists of
any type. For this purpose, we add parametric polymorphism to the type system,
as illustrated by module M3.

The logic on which module M3 is based is called polymorphic many-sorted logic.
In module M3, alpha is a parameter, which is a type variable. A parameter can
be instantiated to any type of the language of the logic. Like variables, parame
ters are not declared. For a polymorphic many-sorted language, we need to extend

I Note that a constructor itself is not a. type.

www.manaraa.com

274

MODULE M3.

BASE Day, People.
CONSTRUCTOR List/i.

CONSTANT Nil: List(alpha);
Monday, Tuesday, Wednesday, Thursday, Friday,
Saturday, Sunday: Day;
Fred, Bill, Mary: People.
Cons: alpha * List(alpha) -> List(alpha).

J. W.LLOYD

FUNCTION
PREDICATE Append: List(alpha) * List(alpha) * List(alpha);

Append3 : List(alpha) * List(alpha) * List(alpha) *
List(alpha).

Append(Nil,x,x) .
Append(Cons(u,x),y,Cons(u,z» <

Append(x,y,z).

Append3(x,y,z,u) <
Append(x,y,w) t
Append(w,z,u).

the concept of a type. For such a language, a type is a "term" constructed using
the bases as "constants", the parameters as "variables", and the constructors as
"functions". Thus, for module M3, the following are types: List (alpha), alpha,
and List (List (Day)). A ground type (also called a monotype) is a type not con
taining parameters. Thus the set of ground types for module M3 is Day, People,
List(Day), List(People) , List(List(Day»,

Module M3 forms a complete Godel program on its own. Typical Godel goals
for this program are as follows.

<- Append3(Cons(Monday,Nil),Cons(Tuesday,Nil),
Cons(Wednesday,Nil), x).

<- Append3(x,y,z,Cons(Fred,Cons(Bill,Cons(Mary,Nil»».

The type system presented in this section can be regarded as a minimal one -
it isn't hard to imagine a more complex type system, but it would be very hard to
have less, since many-sortedness and polymorphism seem essential. Our experience
with Godel strongly suggests that this type system is, in fact, useful in practice
and rarely is the need for a more complex type system found to be a pressing

www.manaraa.com

DESIGNING LOGIC PROGRAMMING LANGUAGES 275

one, although there certainly are applications where having order-sortedness, for
example, would be an advantage. Furthermore, this type system has the advantage
that, under a rather general condition (see (HL91)), no run-time type checking is
needed.

5. The Godel Module System

Lists are a common data structure. Thus Godel provides, via the module system,
a built-in constructor for list processing. The constructor is called List and has
arity 1. There is also a constant Nil and a function Cons, whose declarations are
as follows.

CONSTANT
FUNCTION

Nil: List(alpha).
Cons: alpha * List(alpha) -) List(alpha).

The way the constructor List/i, the list notation, and the various list pro
cessing predicates are made available for use is by means of the module Lists,
which is provided by the system. In the module Lists, the constructor List/i is
declared, as are the constant Nil and the function Cons. Also a collection of use
ful list processing predicates, including Append, is defined there. Another module
makes these predicates available for use by means of an IMPORT module declaration.
For example, in module M4, the IMPORT declaration imports into M4 the construc
tor List, the constant Nil, the function Cons, and various predicates including
Append. Thus List, Nil, Cons, and Append are available for use in M4. In general,
if a module imports from another module, it imports all the symbols exported by
the other module.

With this use of modules, we can now give the final version of module Mi,
which is module M4. Modules M4, Lists, and Integers, which is imported by
Lists, together form a Godel program. Typical Godel goals for this program are
then as follows (where advantage is taken of the usual syntactic sugar which Godel
provides for lists).

<- Append3([Monday] ,[Tuesday] ,[Wednesday] ,x).

<- Append3(x,y,z, [Fred,Bill,MaryJ).

In general, modules consist of two parts, a local part and an export part. The
local part of a module is indicated by a LOCAL or MODULE module declaration. The
export part of a module is indicated by an EXPORT or CLOSED module declaration. In
these declarations, the keywords LOCAL, MODULE, EXPORT and CLOSED are followed
by the name of the module. In fact, a module may have a local and an export part,
or just a local part, or just an export part.

The other kind of module declaration is the IMPORT declaration, which has the
form

www.manaraa.com

276 1. W. LLOYD

MODULE M4.

IMPORT Lists.

BASE Day, People.

CONSTANT Monday, Tuesday, Wednesday, Thursday, Friday,
Saturday, Sunday: Day;
Fred, Bill, Mary: People.

PREDICATE Append3: List(alpha) * List(alpha) * List(alpha) *
List (alpha) .

Append3(x,y,z,u) <
Append(x,y,w) t
Append(w,z,u).

IMPORT Name.

where Name is the name of a module.
The export part of a module begins with an EXPORT or CLOSED declaration, and

contains zero or more IMPORT declarations, language declarations, and control dec
larations. The local part of a module begins with a LOCAL or MODULE declaration,
and contains zero or more IMPORT declarations, language declarations, control dec
larations, and statements. If a module consists only of a local part, then this is
indicated by using a MODULE declaration instead of a LOCAL declaration. The use
of a CLOSED declaration instead of an EXPORT declaration means that the module
allows some propositions or predicates declared in the module, which although in
principle have a definition via Godel code, to be actually implemented by another
method. All system modules are dosed modules.

In a similar way to the type system, G6del has what is very much a minimal
module system. However, our experience with the language supports the contention
that, even though it is simple, it nearly always provides sufficient flexibility to do
what is needed.

6. Godel Meta-Programming Facilities

In the design of G6del, particular attention has been paid to its meta-logical facil
ities. As has already been explained, there are two representations used for meta
programming. These are the non-ground and the ground representation. The non
ground representation is useful for the vanilla interpreter and various enhancements
of it. However, the non-ground representation does not give sufficient flexibility for

www.manaraa.com

DESIGNING LOGIC PROGRAMMING LANGUAGES 277

Object Meta

Parameter alpha Term Par(6)
Base Day Constant Day'
Constructor List Function List'

Variable x Term Var(3)
Constant Monday Constant Monday'
Function Cons Function Cons'
Predicate Append Function Append'

Connective <- Function <-'
Quantifier ALL Function ALL'

Fig. I. A simplified ground representation

the manipulation of the representations of ob ject level expressions, especially those
containing variables. In contrast, using the ground representation, we can write
in a declarative way many important kinds of meta-programs, such as program
transformers, compilers, debuggers, abstract interpreters, program synthesizers,
and theorem provers. We now turn attention to the ground representation, which
is directly supported by G6del.

The ground representation is a scheme for representing object languages, pro
grams, modules, goals, theories, declarations, terms, and so on, as terms in a
meta-language. The main idea is to represent an object program by a ground term
at the meta-level. Figure 1 illustrates part of a (simplified) ground representation.
The key aspect is that an object level variable is represented by a ground meta
level term. Note also that an object-level predicate is represented by a function at
the meta-level. In fact, in G6del, the details of the ground representation are not
made explicit. (For details of various ways of setting up a ground representation, see
(BK82), (HL89), or (HL88).) Instead, following an abstract data type approach,
G6del provides, via the system modules Language, Program, and Theory, a set
of meta-predicates which allow a meta-program to access and manipulate terms
representing object expressions. The total number of predicates provided by these
three modules is around 160. The constants and functions actually used in the
representation are mostly hidden in the local parts of these modules. However,
we emphasize strongly that, even though the details of the ground representation
are hidden, all the predicates exported by these modules can be given declarative
definitions.

G6del supports the ground representation of both (object) G6del programs and
(object) theories. The first of these is given by the module Program and the second

www.manaraa.com

278 J. W.LLOYD

by the module Theory. For various example meta-programs using these modules,
we refer the reader to (HL91). We now discuss the module Language which provides
some facilities for the manipulation of the representations of (object) languages
common to both of these ground representations.

First, Language imports all the symbols exported by the modules Integers,
Lists, and Strings. It also declares (amongst others) the following bases, which
are required by the ground representation of languages.

BASE OLanguage, OName, o Formul a , OTerm.

OLanguage is the type of a term representing a language, OName is the type of a term
representing the name of a symbol, OFormula is the type of a term representing a
formula, and OTerm is the type of a term representing a term.

Nearly all predicates in Language have a first argument of type OLanguage.
Since a term of type OLanguage represents an (object) language, such a term
contains the representation of all the declarations in a language. All (object) lan
guages admit the connectives t, \/, ., <-, ->, and <->, and the quantifiers SOME
and ALL. In addition, the language used by an (object) Godel program admits
IF-THEN-ELSE constructs and commits.

We now discuss in some detail a representative selection of predicates provided
by Language.

The first two predicates are concerned with the representation of the connectives
and quantifiers.

PREDICATE And : OLanguage * OFormula * OFormula * OFormula:
All : OLanguage * List(OTerm) * OFormula * OFormula.

And is intended to be true when its first argument is the representation of a lan
guage, its second and third arguments are the representations of formulas in this
language, and its fourth argument is the representation of the formula which is the
conjunction of the formulas in the second and third arguments. All is intended
to be true when its first argument is the representation of a language, its sec
ond argument is the list of the representations of variables, its third argument is
the representation of a formula in this language, and its fourth argument is the
representation of the formula which is obtained by taking the universal quantifi
cation over the set of variables in the second argument of the formula in the third
argument.

The next predicate is concerned with expressions independent of the object
language.

PREDICATE Variable : OTerm.

Variable is intended to be true when its argument is the representation of a
variable. Variable covers the meta-logical uses of Prolog's var.

The next two predicates are concerned with ensuring terms and formulas can
be expressed in a language and have certain properties.

www.manaraa.com

DESIGNING LOGIC PROGRAMMING LANGUAGES

PREDICATE NonVarTerm: OLanguage * OTerm;
GroundAtom : OLanguage * OFormula.

279

NonVarTerm is intended to be true when its first argument is the representation
of a language and its second argument is the representation of a non-variable
term in this language. NonVarTerm covers the meta-logical uses of Prolog's nonvar.
GroundAtom is intended to be true when its first argument is the representation of
a language and its second argument is the representation of a ground atom in this
language.

The final predicate is useful for pulling apart and constructing terms.

PREDICATE FunctionTerm: OLanguage * OTerm * OName * List(OTerm).

FunctionTerm is intended to be true when its first argument is the representation
of a language, its second argument is the representation of a term in this language
with a function at the top-level, its third argument is the representation of the
name of this function, and its fourth argument is the list of representations of the
top-level subterms of this term.

The module Program declares (amongst others) the following base.

BASE OProgram.

OProgram is the type of a term representing an (object) Godel program.
We now discuss in some detail a representative selection of predicates provided

by Program. The first of the predicates provided by Program which we discuss here
is ProgramLanguage, which has the following declaration.

PREDICATE ProgramLanguage : OProgram * OLanguage.

ProgramLanguage is intended to be true when its first argument is the represen
tation of a program and its second argument is the representation of the language
of this program.

The next predicate is concerned with accessing statements in open modules.

PREDICATE StatementInModule: OProgram * String * OFormula.

StatementInModule is intended to be true when its first argument is the repre
sentation of a program, its second argument is the name of an open module in
this program, and its third argument is the representation of a statement in this
module.

The next predicate is needed for dynamic meta-programming.

PREDICATE InsDelStatement : OProgram * String * OFormula * OProgram.

InsDelStatement is intended to be true when its first argument is the repre
sentation of a program, its second argument is the name of an open module in this
program, its third argument is the representation of a statement in the language

www.manaraa.com

280 1. W.LLOYD

of this module wrt this program, and its fourth argument is the representation of
a program which differs from the program in the first argument only in that it also
contains this statement in this part of this module. InsDelStatement can be used
to insert a statement by calling it with the first three arguments instantiated and
the fourth a variable. It can be used to delete a statement by calling it with the
first argument a variable and the remaining arguments instantiated.

The 'final predicate is concerned with running goals for a program.

PREDICATE Succeed: OProgram * OFormula * OTermSubst.

Succeed is intended to be true when the first argument is the representation of
a program, its second argument is the representation of a goal in the language of
this program, and its third argument is the representation of a computed answer
from an SLDNF-refutation (using the Godel computation rule) for this goal and
this program. The predicate Succeed is the Godel equivalent of the standard demo
predicate.

The ground representation can also be used for representing object (many
sorted) theories, theorems, declarations, terms, and so on, as terms in a meta
language. A theory is like the local part of a module having only a local part,
except that it does not contain IF-THEN-ELSE constructs, commits, or control dec
larations, and it contains arbitrary first order formulas instead of statements. A
theory can import modules. A typical application for the system module Theory
could be a program synthesis system. For such a system, the specification for a
program would be expressed as a theory, which perhaps imported some modules.
Then a meta-program would perform transformation on this theory until it took
the form of (essentially) a Godel module. After further modification (for exam
ple, adding control information and/or employing conditionals), the synthesized
program would result.

7. Other Godel Facilities

We discuss Godel's control facilities. Prolog uses the computation rule which al
ways selects the leftmost literal. In contrast, Godel has a flexible computation
rule, which may select a literal other than the leftmost literal. The advantages
of a flexible computation rule are well known. These are that it can be used to
ensure safeness (especially of negative calls), assist termination, assist efficiency,
and control pruning. The Godel computation rule is partly specified by means
of DELAY control declarations, which are syntactic variants of the when declara
tions of NU-Prolog (TZ88) and cause certain calls to be delayed until they are
sufficiently instantiated. Many Godel system predicates have DELAY declarations.
Furthermore, a programmer can specify co-routining behaviour by means of these
declarations.

Godel has constraint solving capabilities in the domains of integers and ratio
nals. G6del can solve systems of (not necessarily linear) constraints which involve

www.manaraa.com

DESIGNING LOGIC PROGRAMMING LANGUAGES 281

integers, variables which range over bounded intervals of integers, and the usual
functions and predicates with integer arguments. It can also solve systems of linear
rational constraints involving rationals, variables ranging over the rationals, and
the usual functions and predicates with rational arguments.

The Godel pruning operator is based on the commit of the concurrent languages.
In fact, the simplest form of the Godel commit is similar to the commit of the
concurrent languages. Another form is the one solution operator. Each of these
is a special case of the most general form of the commit (HL91), which has the
property that programs containing, the commit are closed under the usual program
transformations, such as unfolding.

In addition to the motivation for Godel discussed earlier, we make two further
points. The first is tha.t because Godel has greatly improved declarative semantics
compared to Prolog it is eminently suited as a teaching language. The other point
is that, even if G6del itself never becomes widely used, we hope some of its ideas
will be adopted by other la.nguages. Significant extensions and variations of Prolog
have been introduced and studied by the logic programming community over the
last 15 years. Unfortunately, these languages have been essentially built on top
of Prolog and therefore inherit many of Prolog'S semantic problems. For example,
most of these languages use Prolog's approach to meta-programming. We hope
that the designers of current and future logic programming languages will see
from Godel that it really is possible to design and implement a language with a
declarative semantics that we don't have to be embarrassed about.

8. Discussion

Much impressive research has been carried out in the design of logic program
ming languages over the last 20 years. As well as the original Prolog language, we
now have numerous extensions and variations, such as concurrent, meta-logical,
constraint, higher-order, and object-oriented programming. On the other hand,
probably 90% of all logic programs have been written for Prolog systems more
or less functionally equivalent to the first Marseille Prolog system which we now
know to have serious design deficiencies! This is a rather disappointing situation.
Modern Prolog systems are many orders of magnitude more efficient than the orig
inal Marseille version, but from a language design point of view are essentially the
same. It is hard to escape the conclusion that researchers in this area have spent
too much time worrying about efficiency and parallelism and too little time worry
ing about whether their languages have even the most basic software engineering
facilities and have any real credibility at all as declarative languages! It is long
past the time for logic programmers to concentrate more on basic design issues.

First, we must accept that a type system and a module system are absolutely
essential in a modern language. The arguments for these are overwhelming. Sec
ond, we must avoid the Prolog constructs (mainly the meta-logical ones) which so
severely compromise the declarative semantics of programs. The techniques for this

www.manaraa.com

282 J. W.LLOYD

are now well understood, although further research on their efficient implementa
tion is needed since this problem has been greatly neglected. In particular, new
languages which take (full) Prolog as their basis cannot be accepted any more.
Starting from a solid foundation of a core language with a type and a module
system and declarative meta-logical facilities, we need to explore the various in
teresting extensions, such as constraint, higher-order, object-oriented, concurrent,
and so on.

So what are the most interesting directions to pursue for the immediate future of
logic programming language design? For concreteness, we discuss various possible
extensions of Godel, which can be considered to be an acceptable core language.

The current definition of Godel includes some modest constraint-solving ca
pabilities. However, it would be interesting to extend these capabilities to include
the more sophisticated constraint-solving capabilities of established constraint lan
guages. The implementation techniques for this a.re now well established, although
more work is needed on designing clean and elegant facilities at the language level.

It is easy to conceive of a language, which would bear the same relation to
Godel as the concurrent logic programming languages have to Prolog. The main
changes would be to drop Godel's language features which depend on negation,
enforce the use of the commit in every statement, and extend the control facilities
to give the control available in the concurrent languages. Furthermore, recently,
there have been attempts to build languages which include both the Prolog style
of computation and the concurrent style, as, for example, with the Andorra Pro
log language a.nd Andorra computational model (HB88), (SWY91a), (SWY91b),
(Nai88). If such a unification is possible for Prolog-based languages, then it is
equally possible for Godel.

A major trend in programming languages, not just logic programming lan
guages, in recent years has been the introduction of object-oriented features. The
kind of type system already discussed provides some of the features required. How
ever, some significant extensions are also needed. These include an order-sorted
type system (for handling subtypes), parametric modules, and specialised facili
ties for structuring theories ~hich represent objects.

Making a higher-order extension of Godel would involve applying to Godel
the implementation techniques for adding higher-order features which have been
developed for Prolog. The addition of higher-order facilities to Godel would fill a
gap in the non-ground representation, for which only quantifier-free formulas can
be represented. With higher-order facilities, quantified formulas can be represented
using A-terms.

The extensions discussed so far (constraint, concurrent, object, and higher
order) are to a large extent orthogonal to one another. Thus, it ought to be possible
to build an extension of Godel which includes all four of these in a simple and
elegant way.

Another extension is to add other meta-programming modules. The module
Program provides a representation for object Godel programs and is the most im-

www.manaraa.com

DESIGNING LOGIC PROGRAMMING LANGUAGES 283

portant ground representation. Godel also currently provides the module Theory
for theorem proving and program synthesis applications. However, we also need
meta-programming modules for representing programs from other programming
languages. For example, it may be desirable to write in Godel a program trans
former for Prolog programs. For this, we need a version of Program for representing
Prolog programs. In fact, all these variations of Program will be easy to implement
once the difficulties of implementing Program itself ha.ve been overcome. In the
longer term, a. more flexible a.pproach to providing ground representations may be
preferable. Instead of building in a .fixed set of ground representations, lower-level
primitives would be provided which programmers could use to define their own
ground representations.

Most logic programming systems make use of some kind of "closed world as
sumption". For example, Godel uses the completion of the program as the theory.
The newer semantics currently being studied, such as the well-founded seman
tics, are also based on such an assumption. While this assumption is justified in
many circumstances, there are also many for which it is not justified, especially for
sophisticated knowledge base applications. Consequently, it is desirable to allow
logic programming systems to use more general theories than completions and to
have corresponding proof procedures for theorem proving in such theories. In any
case, the argument for a "closed world assumption" has always been somewhat
suspect since it is based largely on a desire to justify the use of the efficient proof
procedure SLDNF-resolution! However, with our better understanding of theorem
proving implementation techniques and with much more powerful computers be
coming available, the efficiency argument for SLDNF-resolution (and related proof
procedures) looks increasingly untenable. If we want logic programming systems
to be more widely applicable, we really must look seriously at this issue.

Finally, let us consider longer term matters. Program synthesis, the synthesis of
an efficient program from a specification, is one of main goals of Computer Science.
It should also be a major goal oflogic programming. In fact, logic programming has
already made substantial progress in this direction. The very idea that a theory can
be a program at all is a contribution of logic programming. Furthermore, some logic
programming systems have raised the level of a program toward a specification. For
example, NU-prolog has a control preprocessor which automatically adds useful
control declarations to a large class of programs. It also admits a larger class of
programs than most systems, allowing arbitrary formulas in the bodies of goals
and clauses. (Godel also has these facilities.) However, much more is possible, as is
clear from the large amount of research taking place on program synthesis outside
logic programming.

A general framework for program synthesis is as follows. First, the specifica
tion is written down. This is either a first order theory, as specifications are usu
ally given, or an intended interpretation. (The choice here is between giving the
intended interpretation directly or else giving a theory which has the intended
interpretation as a model.) Assuming the latter case, the specification is then

www.manaraa.com

284 J. W. LLOYD

transformed (soundly) into a more efficient theory. This is the hard part and tech
niques already developed by researchers in program synthesis will be needed here,
plus many others probably. Notice, however, that program synthesis is being for
mulated here as a problem of program transformation. The specification and the
program are (essentially) in the same language - the main difference is that the
program can be run much more efficiently under some suitable proof procedure.
The final, and easier, step is to add control declarations, pruning, if-then-else con
structs, and so on, to obtain the final efficient program. Program synthesis is a
challenging problem. However, when we have solved it, we truly will have achieved
declarative programming!

9. Conclusion

Logic programming has a credibility problem, which arises from the large gap
between theory and practice. Put simply, the problem is that up to now there
have been no practical logic programming languages which also have a satisfac
tory semantics, especially declarative semantics. Thus logic programming has not
delivered what it so clearly promises - practical, declarative programming. As a
result, the field has not had the impact on computing that one could have ex
pected by now (although there have been some successes, notably in databases,
expert systems, and natural language processing). What is needed to build practi
cal, declarative logic programming languages has been known for a number of years
- there only remains the effort and commitment on the part of enough researchers
to bring these good ideas to life.

Acknowledgement

Much of the ma.terial of this paper is a.dapted from the Godel report, which was
written in collaboration with P.M. Hill.

References

[BK82] K.A. Bowen and R.A. Kowalski. Amalgamating language and metalanguage in logic
programming. In K.L. Clark and S.-A. Tarnlund, editors, Logic Programming, pages 153-172,
Academic Press, 1982.

[CoI90] A. Colmerauer. An introduction to Prolog III. In l.W. Lloyd, editor, Proceedings of the
Symposium on Computational Logic, Brussels, pages 37-79, Springer- Verlag, 1990.

[DvHS*88] M. Dincbas, P. van Hentenryck, H. Simonis, A. Aggoun, T. Grai, and F. Berthier. The
constraint logic programming language CHIP. In Proceedings of the International Conference
on Fifth Generation Computer Systems, Tokyo, pages 693-702, 1988.

[End72] H. B. Enderton. A Mathematical Introduction to Logic. Academic Press, 1972.
[HB88] S. Haridi and P. Brand. Andorra Prolog: an integration of Prolog and committed choice

languages. In Proceedings of the International Conference on Fifth Generation Computer
Systems, Tokyo, pages 745-754, 1988.

[HL88] P.M. Hill and J.W. Lloyd. Meta.Programmingfor Dynamic Knowledge Bases. Technical
Report CS-88-18, Department of Computer Science, University of Bristol, 1988.

www.manaraa.com

DESIGNING LOGIC PROGRAMMING LANGUAGES 285

[HL89] P.M. Hill and l.W. Lloyd. Analysis of meta-programs. In H.D. Abramson and M.H.
Rogers, editors, Meta-Programming in Logic Programming, pages 23-52, MIT Press, 1989.
Proceedings of the Meta88 Workshop, June 1988.

[HL91] P.M. Hill and J.W. Lloyd. The Godel Report. Technical Report TR-91-02, Department
of Computer Science, University of Bristol, 1991. Revised September 1991.

[HLS90] P.M. Hill, J.W. Lloyd, and J.C. Shepherdson. Properties of a pruning operator. Journal
of Logic and Computation, 1(1):99-143, 1990.

[JL87] l. Jaifar and 1.-L. Lassez. Constraint logic programming. In Fourteenth Annual ACM
Symp. on Principle& of Programming Language&, pages 111-119, Munich, 1987.

[Ll087] 1. W. Lloyd. Foundation~ of Logic Programming. Springer-Verlag, second edition, 1987.
[Nai88] L. Naish. Parailelizing NU-Prolog. In R.A. Kowalski and K.A. Bowen, editors, Proceed

ing8 of the Fifth International Conference and Sympo8ium on Logic Programming, Seattle,
pages 1546-1564, MIT Press, 1988.

[NM88] G. Nadathur and D. Miller. An overview of A-Prolog. In R.A. Kowalski and K.A.
Bowen, editors, Proceeding. of the Fifth International Conference and Sympo&ium on Logic
Programming, Seattle, pages 810-827, MIT Press, 1988.

[Sha89] E. Shapiro. The family of concurrent logic programming languages. ACM Computing
Surveys, 21(3):412-510, 1989.

[SWY91a] V. Santos Costa, D.H.D. Warren, and R. Yang. The Andona-I engine : a paral
lel implementation of the Basic Andorra model .. In K. Furukawa, editor, 8th International
Conference on Logic Programming, Paris, pages 825-839, MIT Press, 1991.

[SWY91bj V. Santos Costa, D.H.D. Warren, and R. Yang. The Andorra-I preprocessor: sup
porting full Prolog on the Basic Andorra model. In K. Furukawa, editor, 8th International
Conference on Logic Programming, Paris, pages 443-45.6, MIT Press, 1991.

[TZ88j J. A. Thorn and J. Zobel. NU-Prolog Reference Manual, Version 1.3. Technical Report,
Machine Intelligence Project, Department of Computer Science, University of Melbourne,
1988.

www.manaraa.com

EFFICIENT BOTTOM-UP EVALUATION OF LOGIC

PROGRAMS

RAGHU RAMAKRISHNAN, DIVESH SRIVASTAVA and S. SUDARSHAN
Computer Sciences Department

University of Wisconsin - Madison
Madison WI 53706, U.S.A.

Abstract. In recent years, much work has been directed towards evaluating logic programs
and queries on deductive databases by using an iterative bottom-up fixpoint computation.
The resulting techniques offer an attractive alternative to Prolog-style top-down evaluation
in several situations. They are sound and complete for positive Horn clause programs, are
well-suited to applications with large volumes of data (facts), and can support a variety
of extensions to the standard logic programming paradigm.

We present the basics of database query evaluation and logic programming evaluation,
and then discuss bottom-up fixpoint evaluation. We discuss an approach based upon using
a program transformation ("Magic Templates") to restrict search, followed by fixpoint
computation using a technique ("Semi-naive evaluation") that avoids repeated inferences.
The program transformation technique focuses the fixpoint evaluation, which is a forward
chaining strategy, by propagating bindings in the goal in a manner that essentially mimics
the backward-chaining behavior of top-down evaluation strategies.

After presenting the basic framework for bottom-up evaluation, we discuss several
refinements that optimize the treatment of non-ground terms, improve memory utilization,
reduce the cost of duplicate checking, and utilize the declarative semantics of the program
to perform semantic query optimization in a number of ways. We also consider several
extensions to the logic programming paradigm, and discuss how the bottom-up evaluation
framework can be used to support these extensions. The extensions include support for
negation, set-terms, constraint manipulation and quantitative reasoning.

Finally, we discuss several systems based upon bottom-up evaluation, including Aditi
(Univ. of Melbourne), EKS-Vl (ECRC-Munich), Glue/NAIL! (Stanford Univ.) and LDL
(MCC-Austin). We have developed such a system, called CORAL, and we present this in
more detail.

Key words: Logic Programs, Bottom-Up Evaluation, Deductive Databases, Database
Query Languages.

1. Introduction

Traditionally, logic programming language implementations have evaluated
programs top-down. Recent developments in evaluation of database queries
have provided a means of evaluating logic programs bottom-up while still
retaining the focusing properties of top-down evaluation, based in large part
on optimizing program transformations.

EXAMPLE 1.1. As a simple example of the power of the bottom-up ap
proach, consider a definition of transitive closure

t(X, Y)
t(X, Y)
query(Y)

e(X, W), t(W, Y).
e(X, Y).
t(5, Y).

287

P. Dewilde and J. Vandewalle (eds.). Computer Systems and Software Engineering. 287-324.
© 1092 Kluwer Academic Publishers.

www.manaraa.com

288 R. RAMAKRISHNAN ET AL.

If e is cyclic, Prolog will not terminate on this program. Even if e is not
cyclic, there are values for e such that Prolog takes time exponential in the
size of the answer.

To evaluate the original query bottom-up, we first obtain the following
program by first applying the Magic Templatesl transformation (Section 3.1)
and then predicate factoring (Section 5.1):

magicjbJ (W)
magicjbJ(5).
ft(Y)
query(Y)

ft(W).

magicjbJ(X), e(X, Y).
ft(Y).

Evaluating this program using Semi-naive bottom-up evaluation (Section 3.2)
always terminates and computes the answer to the query in time linear in
the answer size.

Essentially the same program results if Magic Templates plus factoring
is applied to versions of the transitive closure expressed with different forms
of the recursive rule, including the left-recursive and binary recursive forms
(upon which Prolog does not terminate for any values of e). This example
is presented in detail in Section 5. 0

This is an example where the bottom-up approach based on program
transformations has notable success. Even on programs for which the trans
formations do not achieve such large gains, the Magic Templates transforma
tion ensures that no "irrelevant" goals or facts are generated, and in many
cases significant advantages accrue when bottom-up evaluation is used, pri
marily because:

With memoing, it implements a form of dynamic programming, which
eliminates a great deal of redundant computation, and
It is sound and complete, and thus the declarative semantics of the pro
gram (which is taken to be its least Herbrand model) is preserved. This
non-procedural approach allows for much more flexibility in program
transformation and optimization.

In this paper, we give a tutorial introduction to the bottom-up approach
to logic program evaluation. We introduce notation and preliminary def
initions in Section 2, and present a summary of the bottom-up evalua
tion method based on the Magic Templates program transformation and
Semi-naive fixpoint evaluation in Section 3. In this section, we also discuss
some alternatives to the Magic Templates approach and compare top-down
and bottom-up methods briefly. We present a survey of some related pro
gram transformations used in the bottom-up approach in Section 5. In Sec
tion 6, we discuss various extensions to the Horn clause logic programming

1 Earlier versions of the algorithm were called Magic Sets. See Section 3 for details.

www.manaraa.com

EFFICIENT BOTIOM-UP EVALUATION OF LOGIC PROGRAMS 289

paradigm. We describe some systems based upon bottom-up evaluation in
Section 7, and discuss one of them (CORAL) in more detail in Section 8.

We note that some related evaluation techniques (e.g., Vieille's QSQR
and QoSaQ [108; 109; 110], parallel evaluation techniques (e.g., work by
Gonzalez-Rubio, Bradier and Rohmer [35], Ganguly, Silberschatz and Tsur
[32], Cohen and Wolfson [24], and others, e.g. [29; 74; 104; 112]), work on
integrity constraints (e.g., Bry, Decker and Manthey [15], Vieille et al. [106]
and others), work on production rule systems (e.g., Forgy [30], Sellis, Lin
and Raschid [92], Widom et al. [111], and others, and systems such as OPS
5), work on intelligent query answering (e.g. [54; 22]) etc. are not discussed
in this tutorial presentation due to lack of space. Our coverage attempts to
present one coherent set of results that are indicative of the field, rather
than a survey, and is doubtless influenced by our personal perspectives.

2. Notation and Preliminary Definitions

The language considered in this paper is that of Horn logic. Such a language
has a count ably infinite set of variables and countable sets of function and
predicate symbols, these sets being mutually disjoint. It is assumed, without
loss of generality, that with each function symbol I and each predicate symbol
p, is associated a unique natural number n, referred to as the arity of the
symbol; I and p are then said to be n-ary symbols. A O-ary function symbol
is referred to as a constant. A term in a first order language is a variable,
a constant, or a compound term I(tl, ... , tn) where I is an n-ary function
symbol and the ti are terms. A tuple of terms is sometimes denoted simply
by the use of an overbar, e.g., f.

A substitution is an idempotent mapping from the set of variables of the
language under consideration to the set of terms. Substitution operations
are usually written in postfix form. A substitution a is more general than a
substitution () if there is a substitution <p such that () = O'[<p]. Substitutions
are denoted by lower case Greek letters (), a, </>, etc. Two terms tl and t2 are
said to be unifiable if there is a substitution a such that tl[O'] = t2[O']. a is
said to be a unifier of tl and t2. Note that if two terms have a unifier, they
have a most general unifier that is unique up to renaming of variables.

A clause is the disjunction of a finite number of literals, and is said to
be Horn if it has at most one positive literal. A Horn clause with exactly
one positive literal is referred to as a definite clause. The positive literal in
a definite clause is its head, and the remaining literals, if any, constitute its
body. A predicate definition consists of a set of definite clauses, whose heads
all have the same predicate symbol; a goal is a set of negative literals. We
consider a logic program to be a pair (P, Q) where P is a set of predicate
definitions and Q is the input, which consists of a query, or goal, and possibly
a set of facts for "database predicates" appearing in the program.

www.manaraa.com

290 R. RAMAKRISHNAN ET AL.

We follow the convention in deductive database literature of separating
the set of rules with non-empty bodies (the set P) from the set of facts, or
unit clauses, which appear in Q and are called the database. P is referred
to as the progmm, or the set of rules. The motivation is that the rewriting
algorithms to be discussed are applied only to the program, and not to the
database. This is important in the database context since the set of facts
can be very large. However, the distinction is artificial, and we may choose
to consider (a subset of) facts to be rules if we wish. The meaning of a logic
program is given by its least Herbrand model [102].

Following the syntax of Edinburgh Prolog, definite clauses (rules) are
written as

p: -qb·· ·,qn·

read declaratively as ql and q2 and ... and qn implies p. Names of variables
begin with upper case letters, while names of non-variable (Le., function and
predicate) symbols begin with lower case letters. In addition, the following
notation is used for lists: the empty list is written [], and a list with head
H and tail L is written [HIL]. Note that control primitives such as Prolog's
cut are not allowed.

3. The Bottom-Up Approach

The bottom-up approach that we consider consists of a two-part process.
First, the program is rewritten in a form so that the bottom-up fixpoint
evaluation of the program will be more efficient; next, the fixpoint of the
rewritten program is computed by bottom-up iteration. Subsection 3.1 de
scribes the initial rewriting, while Subsection 3.2 investigates the computa
tion of the fixpoint of the rewritten program. Both these steps can be refined
further; this is discussed in later sections.

3.1. THE MAGIC TEMPLATES REWRITING ALGORITHM

As described in [13; 73], the initial rewriting of a program and query is
guided by a choice of sideways information passing stmtegies, or sips. For
each rule, the associated sip determines the order in which the body literals
are evaluated. In analogy to top-down evaluation, we can think of rules
being used to generate answers to queries on the head predicate, with some
arguments bound to given terms; different sips can be chosen for each head
binding pattern.

We present a simplified version of the Magic Templates algorithm, tai
lored to the case that sips correspond to left-to-right evaluation with all
arguments considered "bound" (perhaps to a free variable), as in Prolog.
The idea is to compute a set of auxiliary predicates that contain the goals.

www.manaraa.com

EFFICIENT BOTIOM-VP EV ALVA TION OF LOGIC PROGRAMS 291

The rules in the program are then modified by attaching additional literals
that act as filters and prevent the rule from generating irrelevant tuples.

DEFINITION 3.1. The Magic Templates Algorithm
Let P be a program, and ? - q(c) a query on the program. We construct a
new program pmg. Initially, pmg is empty.
1. Create a new predicate magic..p for each predicate p in P. The arity is

that of p.
2. For each rule in P, add the modified version of the rule to pmg. If rule r

has head, say, p(l), the modified version is obtained by adding the literal
magic..p(l) to the body.

3. For each rule r in P with head, say, p(l), and for each literal qi(l"i) in
its body, add a magic rule to pmg. The head is magic-'li(l"d. The body
contains the literal magic..p(l), and all literals that precede qi in the
rule.

4. Create a seed fact magic-'l(c) from the query.
o

EXAMPLE 3.1. Consider the following program.

sg(X, Y)
sg(X, Y)
? - sg(john, Z)

flat(X, Y).
: - up(X,U),sg(U, V),down(V,Y).

For a choice of sips that orders body literals from left to right, as in Prolog,
the Magic Templates algorithm rewrites it as follows:

o

sg(X, Y)
sg(X, Y)

magic-sg(U, V)
magic-sg(john, Z).

magic-sg(X, Y), flat(X, Y).
magic-sg(X, Y), up(X, U), sg(U, V),

down(V,Y).
magic-sg(X, Y), up(X, U).

We present some results that characterize the transformed program pmg
with respect to the original program P, from [73]. The following theorem
ensures soundness.

THEOREM 3.1. [73} (P, Q) is equivalent to (pmg , Q) with respect to the set
of answers to the query.

DEFINITION 3.2. Let us define the Magic Templates Evaluation Method as
follows:

1. Rewrite the program (P, Q)' according to the choice of sips using the
Magic Templates algorithm.

www.manaraa.com

292

2. Evaluate the fixpoint of the rewritten program.
o

R. RAMAKRISHNAN ET AL.

We hope that the slight abuse of notation in having the same name for the
evaluation method and the rewriting algorithm will not lead to confusion;
the distinction should be clear from the context. The second step above
is presented in more detail in the next subsection. The rewriting has the
important effect of mimicking Prolog in that (modulo optimizations such as
tail recursion optimization and intelligent backtracking) only goals and facts
generated by Prolog are generated. 2

The careful reader will notice that some joins are repeated in the bodies
of rules defining magic predicates and modified rules. The supplementary
version of the rewriting algorithm essentially identifies these common sub
expressions and stores them (with some optimizations that allow us to delete
some columns from these intermediate, or supplementary, relations). We
refer the reader to [13] for details.

Magic Templates is often presented along with an adornment rewriting
that annotates predicates with a string composed of characters If' and 'b',
with one character for each argument. This step, along with a modification
of Magic Templates rewriting that projects out of magic predicates those
arguments that have an f adornment, is used to ensure that the rewritten
program generates only ground facts. For brevity, we omit this step.

3.2. ITERATIVE FIX POINT EVALUATION

We describe a refinement of bottom-up fixpoint evaluation called Semi-naive
fixpoint evaluation, which is cited as the method of choice in the deductive
database literature. Derivations made in one iteration are not repeated in
subsequent iterations since in each iteration, only rule instantiations that
utilize at least one new fact (Le., one generated for the first time in the
previous iteration) are considered.

We follow the presentation in [51] in the rest of this section, with some
simplifications.

Let us first define a binary operator Wp, whose role is similar to that
of the well-known Tp operator of [102]. We use square brackets ([... J) to
denote multisets:
Wp(X,Y) = [h[O] I h: - bt, ... ,bk is a rule of P,

o is mgu of (b}, ... , bk) and (db . .. , dk),
Y ~ X,{d}, ... ,dk} ~ X, and
k ~ 0 and {db ... ,dk} n Y # 0.]

2 This is strictly true only for programs that do not generate non-ground facts. The
method can be modified slightly to make the claim valid for all programs and to allow tail
recursion optimization. For details, see [81].

www.manaraa.com

EFFICIENT BOTIOM-UP EVALUATION OF LOGIC PROGRAMS 293

The multiplicity of an element h[O] is determined by the number of dis
tinct rule instantiations of which it is the head literal. A more rigorous def
inition that formally accounts for the multiplicity is given in [51]; we have
chosen to use an informal presentation for ease of exposition. Intuitively, Wp
only allows deductions from the set of facts X that use the "new" facts Y,
and "counts" a fact as often as it is derived (using distinct rule instantia
tions). We now define Semi-naive iteration. In the following definition, set is
an operator that takes a multi set and returns a set, and subs is an operator
that takes a multiset and returns an irredundant set. (An irredundant set,
or irrset, is a set of elements such that no element subsumes another.)

DEFINITION 3.3. Semi-naive Iteration (SN)
Let S-1 = So = lio = F.
lin+1 = dup..elim(Wp(Sn,lin - Sn-l))
Sn+1 = dup..elim(Sn U lin+1)

S = limn --+oo S n

GC = set(S)
where F is the set offacts, or rules with empty bodies, in the program P, and
dup_elim is either set or subs. We refer to the variant with d1tp_elim = set
as SNs, and the variant with dup_elim = subs as SNI. 0

In Semi-naive iteration, the set of facts produced in iteration n (lin) is
compared with the set of known facts (Sn-d to identify the new facts pro
duced (On - Sn-l)' Duplicates generated within the same iteration are elim
inated by the set operation. Only derivations that use one of these new
facts are carried out in iteration n + 1. This avoids generating many dupli
cate facts by avoiding repeated derivations. The algorithm terminates (at
step n+ 1) when Sn+l = Sn; we must test whether lin+l ~ Sn. Consequently,
Semi-naive iteration terminates if and only if S is finite.

In this presentation we ignore the issue of how to ensure that only deriva
tions that use a new fact are carried out. This is addressed in several papers
(e.g. [6; 9; 5]). The problem becomes more complicated when it is desired to
apply rules in a specified order in each iteration. This issue is discussed in
[49; 78; 90].

The set GC is the set of generated consequences of the program.
Let ground be an operator that takes a set of possibly non-ground facts

and a domain 1) and returns the set of ground facts containing only constants
from 1) that are instances of the input set. The following result shows that
the above iterative methods are consistent with the usual least Herbrand
model semantics of [102]; here implicitly 1) is the domain for the program
in question. We denote the least Herbral1d model of the program by M.

PROPOSITION 3.1. [51} The set of generated consequences GC of a pro
gram computed using Semi-naive Iteration (eithe1' SNs or SNI) is sHch that
ground(GC) = M. 0

www.manaraa.com

294 R. RAMAKRISHNAN ET AL.

We note that ordinary fixpoint evaluation - frequently called "Naive"
(N) iteration in the deductive database literature - corresponds to the case
where the second argument of Wp in the definition of Semi-naive Iteration
is replaced by Sn.

EXAMPLE 3.2. The following program illustrates the difference between N
and SN.

d c.
c b.
b a.
a.
b.

Note that SNs and SNr behave identically on this program. Both Nand SN
generate a and b in the first iteration. In the second iteration, SN generates
c and a second occurrence of b, and eliminates the duplicate b. In the next
iteration, it generates only d, since c was the only new fact found in the
second iteration. In contrast, N additionally generates in each iteration all
the facts that it generated in previous iterations. 0

3.3. RELATED WORK

The Alexander method was proposed independently of the Magic Sets ap
proach in [83]. It is essentially the supplementary variant of the Magic Tem
plates method, described in [13]. Seki has generalized the method to deal
with non-ground facts and function symbols, and has called the general
ized version Alexander Templates [91]. The Alexander methods always use
a single left-to-right sip for each rule, for all possible goals.

The Magic Templates idea was developed in a series of papers ([7; 13;
73]). Several variants of the Magic Templates idea have also been proposed.
For example, it is possible to compute supersets of the magic sets without
compromising soundness. Although this results in some irrelevant compu
tation, it may be possible to compute supersets more efficiently than the
magic sets themselves [94].

Although the Magic Templates idea was introduced to deal with recur
sion, it provides significant improvements for non-recursive queries as well.
In [56; 57] it is shown that the technique can be extended to deal with
SQL programs, including those containing features like group-by, aggrega
tion and arithmetic conditions. In [55] a performance evaluation, carried
out on a DB2 relational system, is presented, demonstrating that the tech
nique performs comparably to standard database techniques, and is often
significantly better.

The Magic and Alexander methods are based on program transforma
tions. Other methods use a combination of top-down and bottom-up control

www.manaraa.com

EFFICIENT BOTTOM-UP EVALUATION OF LOGIC PROGRAMS 295

to propagate bindings. Pereira and Warren presented a memoing top-down
evaluation procedure based on Earley deduction [68]. This evaluation pro
cedure may be viewed as a top-down evaluation procedure that incorpo
rates memoing. Vieille has proposed a method called QSQ [108; 109; 110]
that can be viewed as follows. Goals are generated with a top-down invoca
tion of rules, as in Prolog. However, there are two important differences: 1)
whenever possible, goals and facts are propagated set-at-a-time, and 2) all
generated goals and facts are memoed. If a newly generated goal is already
memoed, this is recognized by duplicate elimination. Dietrich and Warren
have proposed a method called Extension Tables [28]. This method is very
similar to QSQ, but performs computation tuple at a time.

Finally, Kifer and Lozinskii have proposed a method called Filtering,
which is based on constructing a rule-goal graph [46; 47]. There is a node
in the graph for each predicate, and for each rule, and arcs from predicate
nodes to each rule node in whose body it appears, and from rule nodes
to the predicates that they define. The idea is to compute the fixpoint by
propagating tuples along these arcs, and to restrict the computation by
attaching "filters" to arcs.

The reader is referred to [63] for a more detailed discussion of related
work.

4. Top-Down Versus Bottom-Up

In the past, bottom-up methods have not been seriously considered for the
evaluation of logic programs because of a serious drawback: no techniques
were known that avoided computing an unbounded number of irrelevant
facts. Now that such techniques are known, it is worth reconsidering bottom
up approaches. They offer three significant advantages: (1) The declarative
least Herbrand model semantics is guaranteed for positive Horn clause pro
grams. (2) Redundant derivations are avoided through memoing, leading to
asymptotic gains in efficiency for programs in which goals or facts can be de
rived in many ways. (3) As a consequence of (1), no operational guarantees
need be made, thereby making possible a number of semantic optimizations.
One example of a powerful optimization made possible by the declarative
semantics is factoring, discussed in Section 5.

There are a number of top-down evaluation techniques for logic programs
such as Prolog, the Query-Subquery (QSQ) approach and its extensions [108;
110], and Extension Tables [28]. SLD-AL resolution is a theoretical model
of the execution of top-down evaluation techniques that perform memoiza
tion of facts. Memoing top-down evaluations are similar to the bottom-up
approach with respect to advantages (1), (2), and to some extent (3) above.
A natural question is how bottom-up evaluation techniques compare with
memoing as well as non-memoing top-down evaluation techniques.

www.manaraa.com

296 R. RAMAKRISHNAN ET AL.

Initial comparisons were based on the number of facts derived by the
different techniques. Thus, Ramakrishnan [73; 74] presents a class of evalu
ations and shows that within this class bottom-up evaluation of a program
rewritten using Magic Templates computes an optimal number of facts. Seki
[91] presents a direct comparison between the set of facts computed us
ing Alexander Templates rewriting, and using SLD-AL resolution. Bry [16]
shows that several top-down and bottom-up evaluation techniques can be
viewed as specializations of a technique called Backward Fixpoint Proce
dure. Thus the least fixpoints of all these techniques have the same set of
facts. Given a bottom-up evaluation that does not repeat derivation steps,
these comparisons can be extended to include the number of derivations
made.

There are three limitations to the above results. The first is that the
comparisons do not include the cost of each inference. The second is that
these comparisons ignore optimizations that are routinely performed on Pro
log programs such as tail-recursion optimizations (Section 5.2). And third,
the comparisons assume that all answers are required, and do not provide
enough insight for the case that only one answer is needed (although there
is no change in the worst case comparison).

Ullman [99] addressed the first problem, and compared the time cost of
evaluation of Datalog programs using bottom-up evaluation, and a partic
ular top-down evaluation technique. This comparison showed that for the
class of safe Datalog programs (Le., only ground facts are computed and no
uninterpreted function symbols are allowed), bottom-up evaluation can be
performed with a cost that is no more than that of the top-down evalua
tion in order of magnitude. Ramakrishnan and Sudarshan [80] compared a
model of Prolog evaluation that performs tail recursion optimization with a
model of bottom-up evaluation that uses a rewriting due to Ross [85] that
performs tail recursion optimization. They showed that with this model of
bottom-up evaluation the number of inferences and the time cost are (in or
der of magnitude) no more than that of Prolog, for a class of programs that
includes safe Datalog and that allows ground terms to be constructed using
uninterpreted function symbols, but with some restrictions. The rewritten
program may generate non-ground facts, although the original program is
not allowed to do so (for the class of programs considered). For the gen
eral case, where arbitrary non-ground terms are allowed, there are several
problems that increase the cost per inference. These problems are faced
not just by bottom-up evaluation schemes, but also by top-down evaluation
schemes that perform memoization of facts. These issues are discussed in
Section 5.10.

www.manaraa.com

EFFICIENT BOTTOM-UP EV ALUA TION OF LOGIC PROGRAMS 297

5. Some Important Program Optimizations

In this section, we survey a number of optimizations that apply to positive
Horn programs and guarantee query equivalence in the least fixpoint model.
That is, the same set of answers according to the declarative semantics of
logic programs is computed. Note that no further guarantees are offered: no
equivalence is guaranteed with respect to other program predicates, nor is
any ordering preserved in the generation of answers.

This survey is not intended to be comprehensive, but rather to provide
an indication of the flexibility that is available when we only need to pre
serve the declarative semantics. Ensuring that the declarative semantics is
preserved has long been viewed as a bar to efficient evaluation; the results
surveyed here indicate that it can sometimes be considerably more efficient
to guarantee this semantics, rather than an operational semantics. For lack
of space we do not cover some approaches to query optimization such as
the semantic query optimization techniques proposed by Minker, King and
others (see e.g. [48; 17]).

5.1. PREDICATE FACTORING

The basic idea behind predicate factoring is to replace a predicate by two
predicates of strictly smaller arity. This can result in significant speedups, as
the example in this section illustrates. We present a simplified description
that is tailored to the case of programs obtained by applying the Magic
Templates algorithm described in Section 3.1. Our presentation is through
the use of examples, and we do not describe sufficient conditions for the
optimization to apply in general. We refer the reader to [64] for a detailed
treatment.

In essence, we seek to take advantage of the magic predicates to replace
the original predicate in pmg by its projection onto its f argument positions.
Thus, the original (non-magic) predicate in pmg is factored into the magic
predicate, which computes the b argument positions, and this new predicate,
which computes the f argument positions.

EXAMPLE 5.1. We begin with a familiar example, transitive closure. While
efficient algorithms are known, the rewriting algorithms presented in [65]
were the first to automatically derive unary programs for single-selection
queries, for all three forms (left-linear, right-linear, non-linear) of the re
cursive rule. We achieve the same result here by first applying the Magic
Templates transformation and then factoring the rewritten program. To il
lustrate the technique, we consider a single program that includes all three
forms of the recursive rule, although anyone would suffice. It should be
evident that we would also obtain a unary program if the original program

www.manaraa.com

298 R. RAMAKRISHNAN ET AL.

contained just one of the recursive rules. Consider the program and single
selection query below:

t(X, Y)
t(X, Y)
t(X, Y)
t(X, Y)
query(Y)

t(X, ~V), t(Hi, Y).
e(X, H'), t(11', Y).
t(X, lV), e(1\', Y).
e(X, Y).
t(5,Y).

The Magic Templates algorithm rewrites this to:

magic.1 bf (Hi)
magic.1 bf (Hi)
magic.1 bf (5).
tbf(X,Y)

tbf(X,Y)

tbf(X,Y)

tbf(X,Y)

query(Y)

magict b! (X), tbf(X, Hi).
magicjl>! (Xl, e(X, Hi).

magid b! (X), tb!(X, IV), t b! (Hi. Y).
17wgid/)! (X), e(X, W), tb!(Hi, Y).

magid b! (X), t bf(X, W), e(W. n.
IIwgid[,j (X), e(X, Y).
tl>f(.5. Y).

If we identify magic.1 b! tuples with goals in a top-down evaluation, we see
that only the last occurrence of t[l! in a rule body generates new goals, and
further, the answer to a new goal is also an answer to the goal that invoked
the rule. In fact, every ans\ver to a subgoal is also an answer to the query
goal magic..t bf . A second observation is 'that if c is generated as an answer
to a subgoal, then a new subgoal /lulgic.J b! (c) is also generated. These ob
servations lead us to conclude that it does not matter to which subgoal an
answer corresponds; its role in the computation is the same in any case.
That is, tb!(X, Y) can be factored into bt(X) and jt(Y) in the Magic pro
gram. Doing this and applying S0111e simple syntactic optimizations, which
are discussed in [64], we finally obtain the following unary program:

o

magic.1 bf (Hi)
magic.1 bf (5).
jt(Y)
qUe7'y(Y)

jt(lF).

'. I>!(\-) .(V V) mag U: j . ,f _''', 1 •

jt(Y).

5.2. TAIL RECURSION OPTnllZATloN

An optimization that is closely related to factoring is tail-recursion opti
mization. Consider a program of the form

p(a, 1).
p(X,Y): - X > a,p(X -l.Y).

www.manaraa.com

EFFICIENT BOTIOM-UP EVALUATION OF LOGIC PROGRAMS 299

If there is a query ? - p(10, X), queries ? - p(9, X) and so on till ? -
p(O,X) are set up. At this point an answer p(O, 1) is generated by bottom
up evaluation of a program rewritten using Magic Templates. However a
Prolog system can recognize that the second rule is "tail-recursive," and
can avoid generating answers for intermediate goals. The reason is that any
answer substitution for the last goal results in an answer for the head of this
rule with the same answer substitution. Applying this optimization for each
goal on this rule, when the goal? - p(O, X) succeeds, an answer p(10, 1) is
created directly, rather than an answer pea, 1).

Ross [85] shows how the same optimization can be performed in bottom
up evaluation. The details are beyond the scope of this paper, but the essen
tial idea is to generate goal facts of the form query(p1(tT),p2(t2)); such a
fact says the first argument is a subgoal for p1, and any answer substitution
that solves it should be used to generate answers for p2(t2) rather than for
p1(tT).

5.3. PROJECTING ARGUMENTS

Query optimization for relational database queries exploits the commuta
tivity of selection and projection operators with respect to the join oper
ator whenever possible, in order to reduce the size of relations that are
being joined. This is often referred to as "pushing" selections and projec
tions. Pushing selections is achieved through the use of the Magic Templates
transformation; the introduction of recursion makes it necessary to compute
auxiliary sets. Pushing projections has also been explored, and the gains can
be significant. We will illustrate the idea through examples, and refer the
reader to [75] for details.

EXAMPLE 5.2. Consider the transitive closure program of Example 1.1,
but with the query query(Y) : - t(_, Y). The underscore "_" indicates that
we do not care about the value in the first argument position; we simply
want the set of values that appear in the second argument position of t
(with some arbitrary value in the first argument position). Note that such
queries are likely to arise during the course of query optimization. 0

An adornment that distinguishes don't-care argument positions (d) from
the rest (needed or n) was used in [75] to push projections.

EXAMPLE 5.3. Consider a simplified version of the transitive closure pro
gram:

t(X,Y)
t(X, Y)
query(Y)

t(X, W), e(W, Y).
e(X, Y).
t(_, Y).

www.manaraa.com

300 R. RAMAKRISHNAN ET AL.

The adorned program - using nand d adornments - is:

tdn(X, Y) tdn(X, W), e(W, Y).
tdn(X, Y) : - e(X, Y).
query(Y) : _ t dn (_, Y).

It is easy to see that the d argument positions can be uniformly deleted, and
this leaves us with a program in which the recursive predicate is unary. 0

The previous example illustrated how the adornment algorithm can some
times push the projection through recursion and thereby reduce the arity of
recursive predicates. (The observation that pushing projections could reduce
arity of recursive predicates was first made by Aha and Ullman [1], and later
Kifer and Lozinskii [46] and Apers et al. [2]. The adornment algorithm in
[75] generalizes their results.) The acute reader will have observed that more
can be achieved - the recursive rule may be deleted entirely. Algorithms for
deleting redundant rules and literals can be utilized to detect this; in fact,
since such opportunities are frequently created by pushing projections, we
can devise special algorithms for rule and literal deletion that exploit this.
The following program is obtained in the above example using the techniques
of [75]:

tdn(y)
query(Y)

5.4. COUNTING

e(X, Y).
tdn(y).

Counting ([7; 87; 13]) is a refinement of the Magic Sets approach. Whereas
the Magic Sets method restricted the computation to relevant facts, Count
ing additionally computes indices for each fact that indicate why it is rele
vant, and this additional information is used to delete some literals from rule
bodies and to reduce the arity of some predicates by deleting some argument
positions.

Goals correspond to magic facts, as we noted earlier. In the Counting
program, magic facts are called count facts. The index value for a non-count
fact is simply the index value of the goal for which it was generated as an
answer. Index values can be encoded in various ways; we will not consider
the details.

EXAMPLE 5.4. Consider the program of Example 3.1 again. The Counting
algorithm generates:

sgb!(Y, 1)
sgb!(Y, 1)
counLsl!(U,J + 1)
counLsgb!(john, 0).

counLsl! (X, 1), flat(X, Y).
sgb!(V,I + l),down(V,Y).
counLsgb! (X, 1), up(X, U).

www.manaraa.com

EFFICIENT BOTTOM-UP EVALUATION OF LOGIC PROGRAMS 301

We essentially compute (i) "count" facts (analogous to "magic" facts) that
are numbered with their distance from the query (the count facts), and
(ii) values in the free argument positions of program (8g) facts (which we
will refer to as "answers" in this example), also numbered according to the
"count" fact used to generate them. Thus, we only compute sets of goals
and answers, all numbered according to their distance from the query. The
answers to the original query are the (new, reduced arity) 8g facts at distance
(index value) O. The key observation here is that we can no longer identify
the set of answers to any intermediate subgoals since we only maintain sets
of goals and sets of facts, and there may be several goals at a given distance
(except 0, where the only goal is the original query). The potential gain
in the method derives from this observation - where several goals have
the same, or largely overlapping, answer sets we gain by not associating an
answer with each of these goals. On the other hand, it is possible to lose in
performance if each goal/answer appears at several distances from the query.
This can happen for example if there is a cycle in the up relation. Indeed,
such a cycle can lead to non-termination. It is usually suggested that if a
goal is derived with two different distances (i.e. two cmmt facts differ only
in the index values), the Counting method should be abandoned in favor of
Magic Sets. 0

5.5. SPACE OPTIMIZATION

Bottom-up evaluation derives new facts, but has no mechanism built in to
discard facts during the evaluation - all facts are retained till the end of the
evaluation. It is important to discard facts during an evaluation, once they
are not needed, for otherwise space requirements may grow in an unbounded
fashion. Facts are needed to make derivations and to detect duplicate deriva
tions offacts (which may be needed for termination). Consider the following
program which computes fibonacci numbers:

R1 : f~b~O' 1).
R2 : fzb 1,1).
R3: fib N,X1+ X2): - N > l,fib(N - l.X1).Jib(N - 2,X2).

In a Semi-naive evaluation of this program, once a fact J ib(11, _) is de
duced, there is no need to keep any facts fib(m, _) for m S n - 2, since
all derivations using such facts have been made, and the facts will not be
derived again. Such facts can then be discarded during the evaluation. This
issue is studied in detail in [62; 97]. where several sufficient conditions for
discarding facts are developed.

www.manaraa.com

302 R. RAMAKRISHNAN ET AL.

5.6. DUPLICATE ELIMINATION

In general, when a fact is derived in a bottom-up evaluation, duplicate check
ing needs to be done to see if the fact was derived earlier. If it was not, deriva
tions can be made using the fact. If it was, the fact can be discarded. This
check is important for termination of many programs. However, for some
programs such as the fibonacci program above, with Semi-naive bottom-up
evaluation, duplicate facts are never generated. Hence duplicate elimination
need not be done for such programs. Maher and Ramakrishnan study this
issue in detail in [51], and provide sufficient conditions to detect if a program
will not compute duplicate facts.

5.7. LINEARIZING PROGRAMS

An interesting class of program transformations has recently been explored
by a number of researchers [39; 11:3; 88; 77]. The objective is to transform a
program that contains non-linear rules into an equivalent one that contains
only linear rules; this may make some of the other transformations surveyed
in this paper applicable, or permit simplifications in the implementation of
the fixpoint evaluation phase. We do not consider these results here due to
space limitations.

5.S. BOUNDED RECURSION AI\' 0 REDllNDANT LITERALS

One interesting optimization t hat has been studied in some detail is that
of bounded recursion, where a recursive program is bounded if it can be
replaced by a nonrecursive program.

Note that here we are not asking when recursion can be replaced by
iteration; rather, we are asking when a logic program containing recursive
clauses has an equivalent finite logic program in which no clause is recursive.

EXAMPLE 5.5. The following example is from [61].

buys(X, Y)
buys(X, Y)

like.s(X, Y).
tre ndy(X), bllY$(Z, Y).

In English, a person X buys a. product Y if either X likes Y, or X is trendy
and a person Z has bought Y. This recursive progra.m is equivalent to the
following nonrecursive program:

o

buys(X, Y)
buys(X, Y)

likt8(X, J').
trellriy(X).lil,e8(Z, Y).

www.manaraa.com

EFFICIENT BOTIOM-UP EVALUATION OF LOGIC PROGRAMS 303

In general, detecting bounded recursions is undecidable. A rich classifi
cation of sets of programs for which detecting boundedness is decidable or
undecidable has been developed in the literature; see, for example, [26; 38;
31; 61; 66; 105]. A related problem is to identify literals and rules that are
redundant, i.e., that do not change the set of answers for any input database.
For more details about detecting and eliminating redundancy from recursive
Datalog programs, see [67].

5.9. ALGEBRAIC PROPERTIES OF PROGRAMS

The fixpoint evaluation of a logic program can be refined by taking certain
algebraic properties of the program into consideration. Such refinements, and
techniques for detecting when they are applicable, have been investigated
by several researchers [37; :39; 50; GO; Ii]. Ioannidis presents an algebraic
formulation of Data.log programs that is particularly suited to reasoning
about such properties of programs [39]. The following idea is illustrative of
this class of optimizations.

EXAMPLE 5.6. We begin with an example that illustrates commutativity
of rules. The idea has been studied in the references cited above. and several
sufficient conditions are knowll for detecting when this property holds.

1'1 : p(X, Y)
1'2 : p(X, Y)
1'3 : p(X, Y)

([(X, Z),])(Z. n.
p(X. Z).b(Z. n.
('(X.n.

It can be shown that applications of rules 1'1 and 1'2 commute. That is,
1'1.1'2 = 1'2.1'1' This fact can be utilized to avoid many redundant derivations
by evaluating the fixpoint of the program as follows: first apply rule 1'3, then
apply 1'2 as often as possible. and finally apply 1'1 as often as possible. 0

5.10. NON-GROUND FACTS

Non-ground facts are useful for several reasons. They are often useful in
knowledge representation, where we can say that a fact is true for aU values
of a variable. They are useful in a database that stores (and possibly ma
nipulates) rules. They are a.lso useful for specifying patt.prns in queries. alld
are necessary for representing constraint facts.

However, supporting non-ground facts in a botto111- up evaluation (actu
ally, in general in an evaluation that memos fa.cts) has an associated cost.
(1) When making an inference. facts have to ha.ve their variables renamed
so that they do not share variable names. (2) When a head fact with a large
term as an argument is generated. we must share the structure of subtenns
with facts used to derive it, or do extensive cop~'ing. This is easy with ground

www.manaraa.com

304 R. RAMAKRISHNAN ET AL.

terms, but with non-ground terms structure sharing becomes more difficult.
(3) If variables in a large term get instantiated during the inference, cre
ation of the head fact is made more complicated. (4) Unification of large
non-ground terms using currently known techniques is inefficient, especially
compared to the cost of unification for ground terms using hash-consing [36;
89j. (5) Indexing of facts containing variables using currently known tech
niques is inefficient, especially compared to the cost of indexing ground facts
using, say, hash tables.

Consider a program to append two lists:

append([] , Z, Z).
append([XIYj, Z, [XIY1]): - append(Y, Z, Y1).

Query: ?-append([A, B,C], [D,E,Fj,ANS).

The Magic Templates rewriting of the above program is

append([], Z, Z) : - magic..append([j, Z).
append([XIYJ, Z, [XIY1]) : - mag ic..append([X Iy], Z),

append(Y, Z, Y1)

magic..append([A, B, C], [D, E,F]).

If the query uses ground lists, this program runs in O(n) time, where n is
the size of the lists to be appended. If the query uses non-ground lists, and
the program is evaluated without any special optimizations for non-ground
terms, the evaluation takes O(n 2) time.

The structure sharing scheme of Boyer and Moore [14] addresses the first
three problems. The idea is to maintain binding environments with terms,
and note variable bindings there; this also makes sharing subterms easier. A
somewhat complicated naming scheme helps rename all variables in a term
in constant time. However, in the worst case, the cost oflooking up variable
bindings is large since many binding environments may need to be searched.
Also, this scheme does nothing to solve the fourth problem, namely the cost
of unification.

There appears to be no general solution for theorem proving systems,
which is the context in which these problems first appeared. However, in
special cases of bottom-up evaluation of logic programs, efficient techniques
are possible.

In the case of the append program there is no need to do renaming for
the first and last rule of the magic program. For the second rule if the terms
to which the variables Y and Z are bound by the first literal are exactly
the same (pointer match), there is no need for renaming - the variables in
the term to which Y1 is bound can be deduced to be the same as those in
the terms that Y and Z are bound to. This same optimization can perform
unification in constant time. Efficient indexing techniques are possible when
Supplementary Magic Templates rewriting is used. No variable instantiation

www.manaraa.com

EmCIENT BOTTOM-UP EVALUATION OF LOGIC PROGRAMS 305

occurs within large terms, and this makes sharing of subterms easy. Putting
these optimizations together, the program can be evaluated in O(n) time.
A class of programs for which these optimizations are possible is discussed
in Sudarshan and Ramakrishnan [96].

6. Extensions to the Horn Clause Logic Programming Paradigm

6.1. NEGATION

A deductive database query language can be enhanced by permitting nega
ted literals in the bodies of rules in programs. This provides the ability to
deal with non-monotonic deduction. However, in the presence of negated
literals, a program may not have a least model. For example, the program:

p(a): - ,pCb).

has two minimal models, {pea)} and {pCb)}, but no least model. The
meaning of a program with negation is usually given by some "intended"
model ([18; 3; 71; 70; 34; 84; 72; 103], among others).

One important class of negation that has been extensively studied is
stratified negation [18; 3]. Intuitively, a program is stratified if there is no
recursion through negation. Programs in this class have an intuitive seman
tics and can also be efficiently evaluated. The following example describes a
stratified program.

EXAMPLE 6.1. Consider the following program P2:

r1 : anc(X, Y) : - par(X, Y).
r2 : anc(X, Y) : - par(X, Z), anc(Z, Y).
r3 : nocyc(X, Y) : - anc(X, Y), ,anc(Y, X).

Intuitively, this program is stratified because the definition of the predi
cate nocyc depends (negatively) on the definition of anc, but the definition
of anc does not depend on the definition of nocyc.

A bottom-up evaluation of P2 would proceed SCC-by-SCC. First, we
would compute a fixpoint of rules r1 and r2 (the rules defining anc). Rule
r3 is applied only when the all anc facts are known. This can be seen to be
as efficient as the evaluation of programs without negation.

However, the Magic Templates transformation of a stratified program
may become unstratified, and the evaluation of the resulting unstratified
program has received considerable attention in the literature ([4; 44; 42; 10],
among others). 0

A natural extension of stratified programs is the class of locally stratified
programs [71]. Intuitively, a program P is locally stratified if the (proposi
tional) program Gr(P) obtained by taking all ground instances of all rules

www.manaraa.com

306 R. RAMAKRISHNAN ET AL.

in P is stratified. Local stratification has been extended to modular stratifi
cation in [84]. A program P is said to be modularly stratified if each strongly
connected component (SCC) of P is locally stratified after removing instan
tiated rules containing literals that are false in lower SCCs.

EXAMPLE 6.2. Consider the following program P3:

rl : even(O).
r2 : even(s(X)) : - ...,even(X).

This program can be seen to be locally stratified. Consider the following
variant P4 of the above program:

r1 : even(O).
r2 : even(X) : - succ(X, Y), ...,even(Y).

succ(l,O). succ(2, 1). succ(3,2).

Since rule r2 can be instantiated to give the same value for X and Y, pro
gram P4 is not locally stratified. However, it is modularly stratified. Locally
and modularly stratified programs can be evaluated using the techniques
described in [84; 42]. The evaluation of the Magic Templates transformation
of this class of programs has also been considered in the literature ([84; 42;
79]). 0

6.2. SET GROUPING AND AGGREGATION

The group-by construct is used in SQL to partition a relation based on the
values of some of the attributes of the relation. A variant of this construct is
used in LDL [11; 59] to create nested sets within facts. We use the syntax of
LDL in our discussion; however, the semantics we use is from the CORAL[76]
system, and is a minor variant of the LDL semantics. The following example
illustrates the use of set grouping construct < >:

multiseLof _grades(Class, < Grade» : - student(N ame, Class,
Grade).

We assume that there is at most one occurrence of the < > operator in
the head of any rule, and the operator does not occur in the body. We also
assume for now that the program is stratified wrt the < > operator, i.e.,
the definition of the predicate in the body does not depend on the head
predicate if the head of the rule has an occurrence of the < > operator. We
first (conceptually) create a multiset of tuples for multiseLof _grades using
the rule

multiseLof _grades(Class, Grade): - student(N ame, Class,
Grade).

www.manaraa.com

EFFICIENT BOTIOM-UP EVALUATION OF LOGIC PROGRAMS 307

Now for each value of Class (in general, each value of the arguments of the
head that are not enclosed in the < », we create a multiset containing all
the corresponding values for Grade. For each value of Class let this multiset
be called SC/ass; we then create a fact multiseLof _grades{ Class, SC/ass) for
each value of Class.

Aggregate operations such as count, sum, min, and max, which can be
applied to sets of values, are permitted in relational database query lan
guages such as SQL. These can be incorporated into logic programming too,
using the set grouping construct to create multisets that are aggregated on.
Extending the above example, consider the following rule: The following
example illustrates the use of aggregation:

max_grade{Class, max < Grade» : - student{N ame, Class,
Grade)

As before, for each value of Class we create a multiset. But now we apply
the aggregate operation max to the multiset, and create a head fact using
this value rather than the set itself.

There are several approaches to relaxing the assumption of stratifica
tion. Several of the approaches used for negation carryover to set grouping.
There are approaches based on weaker forms of stratification such as group
stratification and magical stratification [56], or modular stratification [84].
Extensions of the well-founded and stable models to deal with aggregates
are considered in [43]. Monotonic programs, where a derivation using an in
complete set does not affect the set of facts computed, are discussed in [25;
56].

In certain contexts, an incomplete set may be used to generate facts that
would not be generated using a complete set, without affecting the final
answer to some queries on a program. One such context is when subsumption
of facts is defined in such a way that facts created using incomplete sets
will be found to be subsumed and will be discarded. Ross and Sagiv [86]
examine such classes of programs. Cruz and Norvell [27] examine the use
of such forms of aggregation in the context of transitive closure. Ganguly,
Greco and Zaniolo [33] examine how to evaluate a class of programs that
are monotonic in a sense different from that used in [56]. Ganguly et al. [33]
and Sudarshan and Ramakrishnan [95] examine rewrite optimizations of
programs that use aggregation, and the rewriting can result in unstratified
programs. The following program for computing the shortest path length
benefits from these optimizations:

www.manaraa.com

308 R. RAMAKRISHNAN ET AL.

Rl : s_pJength(X, Y, min(< C ») : - path(X, Y, C).
R2 :path(X,Y,Cl) : - path(X,Z,C),

edge(Z, Y, EC),
Cl = C+EC.

R3 : path(X, Y, C) : - edge(X, Y, C).
Query: ?-s_pJength(X, Y, C).

For the above program, both the above techniques reduce the number of
facts computed from possibly infinite to polynomial, and both evaluation
techniques can be implemented to be as efficient as Dijkstra's algorithm for
shortest paths.

6.3. CONSTRAINT QUERY LANGUAGES

Constraint query languages ([41; 82; 23; 8] among others) differ from ded uc
tive database query languages in several ways:

1. With each rule r in a constraint query language, we can have a con
junction of constraints over some algebraic structure, in addition to the
other literals in the body of the rule.

2. Each fact p(X; C) is a conjunction of constraints over the given structure,
a relation is a finite collection of such facts (a disjunction of conjunctions
of constraints), and a database is a finite collection of such relations.

Constraint query languages provide a model for reasoning about (po
tentially) infinite sets of ground facts using finite representations. This is
because a constraint fact p(X; C) is a finite representation of the (poten
tially) infinite set of ground facts that satisfy the conjunction of constraints
C.

J affar and Lassez [40] gave a model theory, a fixpoint theory, and a top
down operational semantics for such programs. Kanellakis et al. [41] gave a
bottom-up operational semantics for some classes of constraint query lan
guages.

EXAMPLE 6.3. Consider the following constraint logic program P with a
query:

r1 : p(X) : - X ::; 5,p1(X),p2(X).
r2: p(X) : - X ~ 7,p2(X).
r3 : p1(X) : - X ~ 1, X ::; 6.
r4 : p2(X) : - X ~ 3, X ::; 9.
r5: p2(X): - X ~ 11,X::; 15.
Query: ?-p(X),C.

where p is the query predicate, and C is a conjunction of constraints on
the query. The least model of the program P is the (infinite) set of ground

www.manaraa.com

EFFICIENT BOTIOM-UP EVALUATION OF LOGIC PROGRAMS 309

facts {p1(a),1 ~ a ~ 6iP2(b),3 ~ b ~ 9iP2(c), 11 ~ c ~ 15iP(d),3 ~ d ~
5iP(e), 7 ~ e ~ 9iP(J), 11 ~ f ~ 15}.

Given the above query, program P can be rewritten using Magic Tem
plates and left-to-right sips for each rule to obtain (pmy , Qmy) as follows:

r1: p(X) : - magic..p(X),X ~ 5,p1(X),p2(X).
r2: p(X) : - magkp(X),X ~ 7,p2(X).
r3: p1(X) : - magic..p1(X), X ~ 1, X ~ 6.
r4: p2(X) : - magkp2(X),X ~ 3,X ~ 9.
r5 : p2(X) : - magic..p2(X), X ~ 11, X ~ 15.
r6: magic..p1(X) : - magic..p(X), X ~ 5.
r7: magic_p2(X) : - magic..p(X) , X ~ 5,p1(X).
r8: magic..p2(X): - magic..p(X),X ~ 7.
Qmg : magic..p(X) : - C.

We associate the desired query constraints with the corresponding seed
magic fact.

The magic program is also a constraint logic program. The magic predi
cates can be considered to define a relation consisting of the subgoals that
a top-down evaluation ([40]) would generate, and the constraints associated
with each magic fact correspond to the desired constraints for answers to
that subgoal.

We describe the evaluation of the magic program (pmg , Qmg) for various
constraints C:

- C == (X ~ 7)&(X ~ 12):
All pea) facts, 7 ~ a ~ 9, and pCb) facts, 11 ~ b ~ 12 are in the least
model of P, and are answers to the query.
In the bottom-up evaluation of the magic program, magic..p(X; X ~
7,X ~ 12) is first derived (using rule Qmg). Rule r8 can now be applied
to derive magic_p2(X;X ~ 7,X ~ 12). (Rule r6 cannot be applied
because the constraints in the body of the rule are not satisfied.) This
fact can now be used in rules r4 and r5 to derive p2(X; X ~ 7, X ~ 9)
and p2(X; X ~ 11, X ~ 12). These p2 facts can be used in the body of
rule r2 to derive p(X;X ~ 7,X ~ 9) and P(XiX ~ 11,X ~ 12).
This gives a finite representation of the desired answers to the query,
and mimics the top-down evaluation as well. Note that the bottom-up
evaluation does not compute any facts for pI since these are irrelevant
to answering the query.

- C == X ~ 2:
There are no p facts in the least model that are answers to the query. In
the bottom-up evaluation of the magic program, magic..p(X; X ~ 2) is
first derived. Rule r6 can now be applied to derive magic_pl(X; X ~ 2).
(Rule r8 is not applicable.) This fact can be used in the body of rule r3

www.manaraa.com

310 R. RAMAKRISHNAN ET AL.

to derive p1(X; X ~ 1, X ~ 2). Rule r7 can now be applied to derive
magic..p2(X; X ~ 1, X ~ 2). However, this fact cannot be used in either
rule r4 or rule r5 and the evaluation terminates.
Again, this mimics the top-down evaluation. 0

6.4. QUANTITATIVE LOGIC PROGRAMS

Quantitative logic programs (also referred to as fuzzy databases) ([93; 101;
45], among others) differ from ordinary logic programs in several ways:

1. With each fact pea), we associate a "certainty," 0 ~ a ~ 1, which is a
measure of the strength of the evidence for pea).

2. With each rule r in a quantitative logic program, we associate a certainty
function fr that is used to compute the certainty of the head fact, given
the certainties of facts in the body.

3. With each predicate p, we associate an evidence combination function Fp
that combines the strengths of evidences obtained from different sources
all supporting the same fact.

This provides a model for rule-based reasoning in expert systems, where
the usual logical reasoning in terms of the truth values true and false is
insufficient.

We describe the restricted case of K-standard sequence logics ([93; 101]),
and refer the interested reader to Kifer and Li [45] for more general types
of quantitative logic programs. Quantitative logic programs based on K
standard sequence logics were considered by Van Emden [101]' who gave
a model theory, a fixpoint theory, and a top-down operational semantics
for such programs. A rule in a quantitative logic program with K-standard
sequence logic is of the form:

r :p(X): Cr * min{al,a2," .,an }: - p1(Xt): at, . .. ,Pn(Xn): an.

Thus, the rule certainty function, fr, associated with rule r is

where Cr is some constant, 0 < Cr ~ 1, associated with the rule. The evi
dence combination function Fp({ aI, ... , am}) in such a logic is defined as
max{ at. ... , am}.

EXAMPLE 6.4. Consider the following program PI in K-standard sequence
logic, with query Q:

rl : p(X) : 0.5 * min{ aI, a2} : - pl(X) : at. p2(X) : a2.
r2 : p(X) : 0.45 * al : - p2(X) : at.

r3 : Pl[lj : 0.4.
r4 : p2 1 : 0.5.
r5 : p2 2 : 0.25.
Query: ?-p(l) : cpo

www.manaraa.com

EFFICIENT BOTIOM-UP EVALUATION OF LOGIC PROGRAMS 311

where p is the query predicate, and cp is the desired certainty for p(l). The
least model of the program PI is {pl(l) : OA,p2(1) : 0.5,p2(2) : 0.25,p(l) :
0.225,p(2): 0.1125}.

Given the above query, program PI can be rewritten using (a variant of)
Magic Templates and left-to-right sips for each rule to obtain (Plmg,Qmg)
as follows:

r1: p(X) : 0.5 * min {aI, 0'2} : - magic.p(X) : 0'0, pl(X) : at,
p2(X) : 0'2,

r2 :

r3 :
r4 :
r5 :
r6 :
r7 :

p(X) : 0.45 * 0'1

pl(l) : 0.4
p2(1) : 0.5
p2(2) : 0.25
magicpl(X) : 0'0/0.5
magicp2(X) : 0'0/0.5

r8: magic_p2(X) : 0'0/0.45
Qmg : magic_pC I) : cpo

0'0::; 0.5 * min{0't,0'2}'
: - magic.p(X): 0'0,p2(X): at,

0'0 ::; 0.45 * 0'1.
: - magic.pl(I) : 0'0,0'0 ::; 0.4.
: - magic_p2(1) : 00,0'0 ::; 0.5.
: - magic.p2(2) : 0'0,0'0 ::; 0.25.
: - magic_p(X) : 0'0.
: - magic.p(X) : O'o,pl(X): 0'1,

0'1 ~ 0'0/0.5
: - magic_p(X) : 0'0.

We associate the desired query certainty with the corresponding seed
magic fact magic_p(1).

Note that the magic program cannot be viewed as a quantitative logic
program in K-standard sequence logic. The magic predicates can be consid
ered to define a relation consisting of the su bgoals that a top-down evaluation
would generate, and the number associated with the magic fact corresponds
to the certainty desired for answers to that subgoal-this number can thus
be semantically viewed as a "cutoff."

We describe the evaluation of the magic program (PI m g , Qmg) for various
values of cp :

- cp = 0.2:
Since pel) : 0.225 is in the least model of PI, so is pel) : 0.2. The desired
answer to the query is yes.
In the bottom-up evaluation of the magic program, magic_p(l) is first
derived (using rule Qmg) with a cutoff of 0.2. Rule r6 can now be applied
to derive magic.pl(l) with a cutoff of 004, and rule r8 can be applied to
derive magic_p2(1) with a cutoff of 0.444. Rule r3 can then be applied
to derive pl(l) with certainty 0.4 (since the constraint in the body is
satisfied); rule r4 can also be applied to derive p2(1) with certainty 0.5.
Now, the magic fact magic.p2(1) also can be derived using rule r7 with
a cutoff of 004. The fact p2(l) : 0.5 is now derived again. Finally, rule
rl can be applied to compute p(l) : 0.2, and rule r2 can be applied to
compute pel) : 0.225.

www.manaraa.com

312 R. RAMAKRISHNAN ET AL.

This gives the required answer to the query, and mimics the top-down
evaluation ([101]) as well. Note that the bottom-up evaluation does not
compute facts p2(2) : 0.25 and p(2) : 0.1125 which are irrelevant to
answering the query.

- cp = 0.25:
The desired answer to the query is no. In the bottom-up evaluation of
the magic program, magic-p(l) is first derived with a cutoff of 0.25.
The magic fact magic-p1(1) can now be derived (using rule r6) with a
cutoff of 0.5 (indicating that we need to compute pI with a certainty
of at least 0.5); magic-p2(1) can also be derived (using rule r8) with a
cutoff of 0.556. However, neither p1(1) nor p2(1) can be derived, since
the constraints in the appropriate bodies (ofrules r3 and r4) fail. Since
no pI or p2 fact is derived, no further derivations are made, and there
is no answer to the query (as expected).
Again, this mimics the top-down evaluation, and no irrelevant facts are
computed. 0

7. Deductive Database System Implementations

There have been a number of implementations of deductive databases. In
this section we briefly discuss some of them.

One of the early implementations was LDL [59; 20; 21]. LDL is a main
memory database system implemented at MCC Austin. It extends the declar
ative semantics of Horn clauses by allowing set grouping and aggregate op
erations. The treatment of sets allows set-terms to be specified in the body
of rules; set-matching is used to support this feature. It also allows rules to
perform updates, which means that such rules do not have the usual declar
ative semantics. Rather, their semantics is defined in a constructive fashion
[58]. LDL also provides some control primitives such as choice, provides a
module feature for organizing code, and provides primitives for integration
with C.

NAIL! [98; 53; 52] was another early deductive database system. The cur
rent version is compiled into a set-oriented procedural language called Glue
[69]. NAIL! provides higher order syntactic features, using the semantics of
Hilog [19]. Glue/NAIL! is currently implemented on top of Prolog, and is
main-memory oriented.

EKS-V1 [107] is a deductive database system that combines features of
disk-oriented and in-memory databases. It is implemented on top of the
MEGALOG logic programming system which supports access to secondary
storage. It provides facilities for handling negation and aggregation in a
set-oriented fashion. Unlike the other deductive database systems discussed
here, it provides support for integrity constraint maintenance and hypothet
ical reasoning.

www.manaraa.com

EFFICIENT BOTTOM-UP EV ALUA TION OF LOGIC PROGRAMS 313

Aditi [100] is a deductive database system that is primarily disk oriented.
It provides support for parallelization of the low level operations such as
joins. It is integrated with Prolog, and is compiled into an intermediate lan
guage which is then interpreted. All relational operations are performed with
relations assumed to be disk resident, and join techniques such as sort-merge
and hash-join are used, which means that Aditi is aimed at applications that
are I/O intensive, but typically perform few iterations.

Starburst SQL (see e.g. [56]) extends SQL with recursive view definitions.
This provides greater expressive power to SQL users, while providing the I/O
optimization facilities of SQL in a direct manner for recursive applications.

CORAL [76] is a deductive database system developed by the authors,
and is described in detail in a separate section. LDL, NAIL! and CORAL
belong in one family of deductive database systems in that they are main
memory oriented. They attempt to provide the power of logic programming
using complex terms built using uninterpreted function symbols, and add
new constructs to standard Horn clause logic programs. EKS-V1, Aditi and
Starburst SQL on the other hand are oriented more towards secondary stor
age, and provide less support for complex terms.

8. CORAL-A Deductive Database Programming Language

CORAL3 is a database programming language being developed at UW
Madison. An important goal of CORAL is to provide a powerful declarative
query language. A second goal of CORAL is to provide a clean interface
between an imperative language (C++) and the declarative language. This
is necessary for several reasons such as permitting the user to perform actions
such as updates and to implement time critical functions more efficiently.
To this end C++ is extended with several types, constructs and library
functions.

A CORAL program can be viewed as a collection of declarative mod
ules, and an imperative module. CORAL provides a convenient syntax for
defining predicates using the extended version of C++, and for invoking
queries on the declarative modules from the imperative module. Declarative
modules are compiled into C++ classes, and the runtime system is writ
ten in C++. Thus, CORAL reduces the impedance mismatch between the
declarative modules and the C++ module at both the language level and
the implementation level.

~While there are many similarities to the other deductive database sys
tems mentioned earlier, there are important differences as well. For example,
CORAL supports non-ground terms and ground multisets. The use of gen
eral updates is not allowed in declarative rules. A number of the control

3 CORAL stands for "COmbining Relations And Logic".

www.manaraa.com

314 R. RAMAKRISHNAN ET AL.

features supported in CORAL are novel, as is the approach to integrating
with an imperative language such as C++.

8.1. DECLARATIVE MODULES

Declarative programming is supported by allowing the user to organize sets
of rules and facts into declarative modules. We introduce the syntax using a
program to append two lists.

module Listroutines.
export append (bb/,b/b,/bb).

append([], L, L).
append([H IT], L, [H ILl]): - append(T, L, L1).

This program illustrates the notion of modules, and CORAL's support
for complex objects such as lists. The export statements at the beginning
of each module define what forms of external queries are permitted on the
module ("b" denotes an argument that must be bound in the query, and "f"
an argument that can be free).

CORAL allows facts to have variables within them. Thus, it is possible
to query append as follows:

Query: ?-append([l, 2, 3,4,X], [V, Zj,AN S).

and get the answer

ANS = [1,2,3,4,X,Y,Z]

In this CORAL differs·from Aditi, EKS-VI, LDL, Glue/NAIL! and Star
burst SQL, which restrict the facts in a database to be ground. The cost
and benefits of non-ground facts is discussed in Section 5.10.

8.1.1. Sets and Negation

The keyword not is used as a prefix to indicate a negated body literal. A
program is non-floundering if all variables in a negated literal are ground
before the literal is evaluated (in the left-to-right rule order). CORAL sup
ports a class of programs with negation that properly contains the class of
non-floundering modularly stratified programs (Ross [84]).

Sets can be constructed by set-enumeration, or by set-grouping. Set grou
ping was discussed in Section 6.2. The following rule (fact) illustrates set
enumeration.

children(john, {mary, peter, paul}).

www.manaraa.com

EFFICIENT BOTIOM-UP EVALUATION OF LOGIC PROGRAMS 315

All elements of sets generated thus must be ground terms (Le., not con
tain any variables). General matching or unification of sets (where one or
both of the sets can have variables, respectively) is not supported. CORAL
requires the use of the set-grouping operator to be modularly-stratified (in
the same way as negation). When programs allow the creation of sets (and
nested structures that include sets) the domain (or universe) of discourse
has to be extended beyond the Herbrand universe that is standard in logic
programming. Beeri et al. [12] describe such an extended Herbrand universe.

CORAL provides several stannard operations on sets and multisets as
built-in predicates. These include member, union, intersection, difference,
multisetunion, cardinality, subset, and set. CORAL also provides several ag
gregate operations for use on sets and multisets such as count, min, max,
sum, product, average and any.

8.2. OTHER DECLARATIVE MODULE FEATURES

CORAL uses bottom-up evaluation as the basic paradigm for evaluation of
declarative modules. It uses a variety of optimization techniques including
program transformations such as Magic Templates ([13; 73]), optimizations
of bottom-up evaluation such as Semi-naive evaluation, rule and predicate
orderings, efficient unification techniques such as hash-consing [36; 89] and
sharing of structure for ground terms, and efficient indexing techniques. Cur
rently, evaluation is completely in-memory, although we plan to implement
disk-resident relations in future versions of CORAL. More optimization tech
niques will be incorporated in future versions of CORAL.

Modules are the unit of compilation in CORAL. Numerous annotations
are allowed in modules, and many of these have a global effect on the mod
ule. Unlike Glue/NAIL!, where modules have only a compile time meaning
and no run-time meaning, modules in CORAL have important run-time
semantics. Several run-time optimizations are done at the module level.

In most cases, facts (other than answers to the query) computed during
the evaluation of a module are best discarded to save space (since bottom-up
evaluation stores many facts, space is generally at a premium). Module calls
provide a convenient unit for discarding intermediate answers, which may
take up too much space otherwise. By default CORAL does precisely this
- it discards all intermediate facts and subgoals computed by a module at
the end of a call to the module. This can be overridden by the user, by using
an annotation save_module within a module definition.

CORAL provides utilities to take a text file organized as a table, parse it
into fields and records, and convert it into a relation. Similarly, utilities for
output of relations in tabular form are also provided. This provides some of
the features of the AWK string manipulation language that is available on
U nix systems.

www.manaraa.com

316 R. RAMAKRISHNAN ET AL.

CORAL supports Ordered Search [79], which is an evaluation mecha
nism that orders the use of generated subgoals in a program. Subgoals and
answers to subgoals are generated asynchronously, as in the regular bottom
up evaluation of the magic program. However, the order in which generated
subgoals are made available for use is somewhat similar to a top-down eval
uation. Ordered search maintains information about dependencies between
subgoals, which can be used to evaluate a large class of programs with nega
tion. It also provides an ordering to the computation that hides subgoals;
this could be useful in situations when only a single answer is desired for a
query.

CORAL provides some basic facilities for debugging of programs. A trace
facility lets the user know what rules are being evaluated, and prints out
answers and subgoals as they are generated. CORAL also provides some
high-level profiling facilities, that use as the unit of measurement the uni
fication operation (unification of large subterms are treated as generating
recursive calls to unification for the purpose of this count).

8.3. IMPERATIVE MODULES IN CORAL

An imperative module is a program in an imperative language, which con
sists of C++ augmented by adding a layer of new types and constructs. We
introduce some features of imperative modules using the program in Fig
ure 1, which updates the salary of a person depending on the number of
em ployees that work for the person (directly or indirectly). The program
gives an intuitive idea of the features we provide for imperative modules.

A relation is a set of tuples. The user can create two types of relations:
unindexed relations and indexed relations. Indices can be added to an exist
ing indexed relation by means of a procedure call.

A C++ user can also directly access a database relation (not just get
a copy of it) by providing the name of the relation and its arity. CORAL
provides facilities to insert tuples into, and delete tuples from relations using
the "+ =" and "- =" operators. A procedure update_tuple to update tuples
in a relation is also provided, as illustrated in the example.

CORAL provides two iterative constructs for accessing the tuples of a
relation (the tuples are returned in an arbitrary order). Both these are il
lustrated in the example. FOR_EACH_TUPLE successively instantiates its
first argument to each tuple in the relation given by the second argument.
FOR_EACH_MATCHING_TUPLE successively instantiates its first argument
to each tuple in the relation given by the second argument that matches
the pattern specified by the third argument. A variety of other functions are
available to the imperative language programmer to manipulate relations.
These include all the set and aggregate functions described earlier.

A C++ user can invoke a query on a relation that is defined declaratively

www.manaraa.com

EmCIENT BOTIOM-UP EVALUATION OF LOGIC PROGRAMS

void Update_Sals (Relation *emp)
{

}

TupleType(EmpTuple,3)
TupleArg(1, string, ename); TupleArg(2, string, mname);
TupleArg(3, int, sal);

EndTupleType(EmpTuple)
TupleType(NumempsTuple,2)

TupleArg(1, string, mnam~); TupleArg(2, int, numemps);
EndT u pie T ype(N u memps Tuple)
Emp Tuple *emp_tuple, new_tuple;
NumempsTuple query, *resuILtuple, pattern;
Relation *numofemps = new IndexedRelation(2);

query.seLmname(make_var(O»;
query.seLnumemps(make_var(1»;
calLcoral (" numofemps" , &query, numofemps);

FOR_EACH_TUPLE (emp_tuple, emp) {
pattern.seLmname(emp_tuple~ename(»;
pattern.seLnumemps(make_var(O));
int newsal = emp_tuple~saIO;
FOR_EACH_MATCHING_TUPLE(resuluuple, numofemps,

&pattern) {
newsal += 10* resuIUuple~numempsO;

} END_EACH_TUPLE(resuluuple)
copy_tuple(emp_tuple, new_tuple);
new_tuple~seLsal(newsal);

update_tuple(emp, emp_tuple, new_tuple);
} END_EACH_TUPLE(emp_tuple)

module Employee.
export numofemps (bf).

: - emp(E, M, S). worksfor(E, M)
worksfor(E, M) : - worksfor(E, E1),

emp(El,M,S)
numofemps(M, count(set(< E »)) : - worksfor(E, M).

end module.

Fig. 1. Updating Employee Salaries

317

www.manaraa.com

318 R. RAMAKRISHNAN ET AL.

(and exported by a declarative module), using the procedure calLcoral illus
trated in the example. There are two variants of this procedure, one of
which takes a single query, and the other a set of queries. In later versions of
CORAL we plan to allow inline declaration of a declarative module within
imperative code. This will provide a simpler syntax for calling declarative
modules and could be interpreted as a direct extension of the C++ lan
guage. CORAL provides a simple convention for defining predicates using
C++ code.

To provide efficient support for novel applications, CORAL allows the
user to create new abstract data types and integrate them with the declar
ative query language in a simple and clean fashion, without modifying or
recompiling system code. For instance, when dealing with DNA sequences, a
type sequence that provides several built-in operations such as approximate
subsequence matching, indexing etc. is very useful.

9. Conclusion

We have reviewed a collection of results on bottom-up evaluation of logic
programs, and attempted to place them in the perspective of a coherent
approach to logic program evaluation. The main points, in our opinion, are
the following:

Efficient bottom-up evaluation methods are available that are sound
and complete with respect to the declarative semantics.
Systems based upon these methods are being developed, and offer rich
support for rule-based applications.

Acknowledgements

This paper is based upon a tutorial to be presented at COMPEURO 92
by R. Ramakrishnan. It has borrowed some material from other papers, in
particular [63].

This work was supported by a David and Lucile Packard Foundation
Fellowship in Science and Engineering, a Presidential Young Investigator
Award, with matching grants from Digital Equipment Corporation, Tandem
and Xerox, and NSF grant IRI-9011563.

References

1. Alfred V. Aho and Jeffrey D. Ullman. Universality of data retrieval languages. In
Proceedings of the Sixth A CM Symposium on Principles of Programming Languages,
pages 110-120, San Antonio, Texas, 1979.

2. P.M.G. Apers, M.A.W. Houtsma, and F. Brandse. Processing recursive queries in
relational algebra. In Data and Knowledge (DS-2) , Proc. of the Second IFIP 2.6
Working Conference on Database Semantics, pages 17-39. North Holland, 1986.

www.manaraa.com

EmCIENT BOTTOM-UP EVALUATION OF LOGIC PROGRAMS 319

3. K. R. Apt, H. Blair, and A. Walker. Towards a theory of declarative knowledge.
In J. Minker, editor, Foundations of Deductive Databases and Logic Programming,
pages 89-148. Morgan-Kaufmann, San Mateo, Calif., 1988.

4. 1. Balbin, G. S. Port, K. Ramamohanarao, and K. Meenakshi. Efficient bottom-up
computation of queries on stratified databases. Journal of Logic Programming. To
Appear.

5. 1. Balbin and K. Ramamohanarao. A generalization of the differential approach to
recursive query evaluation. Journal of Logic Programming, 4(3), September 1987.

6. Francois Bancilhon. Naive evaluation of recursively defined relations. In Brodie
and Mylopoulos, editors, On Knowledge Base Management Systems - Integrating
Database and AI Systems. Springer-Verlag, 1985.

7. Francois Bancilhon, David Maier, Yehoshua Sagiv, and Jeffrey D. Ullman. Magic
sets and other strange ways to implement logic programs. In Proceedings of the
ACM Symposium on Principles of Database Systems, pages 1-15, Cambridge, Mas
sachusetts, March 1986.

8. Marianne Baudinet, Marc Niezette, and Pierre Wolper. On the representation of
infinite temporal data and queries. In Proceedings of the Tenth ACM Symposium
on Principles of Database Systems, pages 280-290, Denver, Colorado, May 1991.

9. R. Bayer. Query evaluation and recursion in deductive database systems. Unpub
lished Memorandum, 1985.

10. C. Beeri, R. Ramakrishnan, D. Srivastava, and S. Sudarshan. Valid computations
and the Magic implementation of stratified programs. Manuscript, September 91.

11. Catriel Beeri, Shamim Naqvi, Raghu Ramakrishnan, Oded Shmueli, and Shalom
Tsur. Sets and negation in a logic database language. In Proceedings of the ACM
Symposium on Principles of Database Systems, pages 21-37, San Diego, California,
March 1987.

12. Catriel Beeri, Shamim Naqvi, Oded Shmueli, and Shalom Tsur. Set constructors
in a logic database language. The Journal of Logic Programming, pages 181-232,
1991.

13. Catriel Beeri and Raghu Ramakrishnan. On the power of Magic. In Proceedings of
the A CM Symposium on Principles of Database Systems, pages 269-283, San Diego,
California, March 1987.

14. R. S. Boyer and 1. S. Moore. The sharing of structure in theorem-proving programs.
Computational Logic, pages 101-116, 1972.

15. F. Bry, H. Decker, and R. Manthey. A uniform approach to constraint satisfac
tion and constraint satisfiability in deductive databases. In Procs. International
Conference on Extending Database Technology, February 1988.

16. Francois Bry. Query evaluation in recursive databases: Bottom-up and top-down
reconciled. IEEE Transactions on Knowledge and Data Engineering, 5:289-312,
1990.

17. U. S. Chakravarthy, 1. Grant, and J. Minker. Logic-based approach to semantic
query optimization. ACM Transactions on Database Systems, 15(2):162-207, June
1990.

18. Ashok K. Chandra and David Hare!' Horn clause queries and generalizations. J.
Logic Programming, 2(1):1-15, April 1985.

19. Weidong Chen, Michael Kifer, and Davis S. Warren. Hilog: A first-order seman
tics for higher-order logic programming constructs. In Proceedings of the North
American Conference on Logic Programming, pages 1090-1114, 1989.

20. D. Chimenti, R. Gamboa, and R. Krishnamurthy. Towards an open architecture
for LDL. In Proceedings of the International Conference on Very Large Databases,
pages 195-'204, 1989.

21. D. Chimenti, R. Gamboa, R. Krishnamurthy, S. Naqvi, S. Tsur, and C. Zaniolo. The
LDL system prototype. IEEE Transactions on Knowledge and Data Engineering,
2(1):76-90,1990.

22. L. Cholvy and R. Demelombe. Querying a rule base. In Procs. 1st International

www.manaraa.com

320 R. RAMAKRISHNAN ET AL.

Conference on Expert Database Systems, pages 365-371, April 1986.
23. Jan Chomicki. Polynomial time query processing in temporal deductive databases.

In Proceedings of the Ninth ACM Symposium on Principles of Database Systems,
pages 379-391, Nashville, Tennessee, April 1990.

24. S.R. Cohen and O. Wolfson. Why a single parallelization strategy is not enough in
knowledge bases. In Proceedings of the ACM Symposium on Principles of Database
Systems, pages 200-216, Philadelphia, Pennsylvania, March 1989.

25. M. P. Consens and A. O. Mendelzon. Low complexity aggregation in Graphlog and
Datalog. In Procs. International Symposium on Database Theory, Paris, 1990.

26. Stavros S. Cosmadakis, Haim Gaifman, Paris Kanellakis, and Moshe Y. Vardi. De
cidable optimization problems for database logic programs. In Proceedings of the
Twentieth Symposium on the Theory 01 Computation, pages 477-490, Chicago, Illi
nois, May 1988.

27. I. F. Cruz and T. S. Norvell. Aggregative closure: An extension of transitive closure.
In Proc. IEEE 5th Int'l ConI. Data Engineering, pages 384-389, 1989.

28. Suzanne W. Dietrich and David S. Warren. Extension tables: Memo relations in
logic programming. In Proceedings of the Symposium on Logic Programming, pages
264-272, 1987.

29. G. Dong. On distributed processing of Datalog queries by decomposing databases.
In Proceedings of the ACM SIGMOD International Conference on Management of
Data, pages 26-35, Portland, Oregon, June 1986.

30. C. Forgy. Rete: A fast algorithm for the many pattern/many object pattern match
ing problem. Artificial Intelligence, 19(1):17-37, 1982.

31. Haim Gaifman, Harry Mairson, Yehoshua Sagiv, and Moshe Y. Vardi. Undecidable
optimization problems for database logic programs. In Proceedings of the Second
IEEE Symposium on Logic in Computer Science, pages 106-115, Ithaca, New York,
June 1987.

32. S. Ganguly, A. Silberschatz, and S. Tsur. A framework for the parallel processing
of Datalog queries. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, Atlantic City, New Jersey, May 1990. To appear.

33. Sumit Ganguly, Sergio Greco, and Carlo Zaniolo. Minimum and maximum predi
cates in logic programming. In Proceedings of the ACM Symposium on Principles
01 Database Systems, 1991.

34. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In
Proc. Fifth International Conference and Symposium on Logic Programming, 1988.

35. R Gonzalez-Rubio, J. Rohmer, and A. Bradier. An overview of DDC: Delta Driven
Computer. In Parallel Architectures and Languages Europe, Volume 1: Parallel
Architectures, Lecture Notes in Computer Science, No. 258, pages 414-433, 1987.

36. E. Goto. Monocopy and associative algorithms in an extended lisp. Technical
Report 74-03, Information Science Laboratory, Univ. of Tokyo, Tokyo, Japan, May
1974.

37. A. Richard Helm. Detecting and eliminating redundant derivations in deductive
database systems. Technical Report RC 14244 (#63767), IBM Thomas Watson
Research Center, December 1988.

38. Yannis E. Ioannidis. Bounded recursion in deductive databases. Algorithmica,
1(4):361-385, October 1986.

39. Yannis E. Ioannidis and Eugene Wong. Towards an algebraic theory of recursion.
Technical Report 801, Computer Sciences Department, University of Wisconsin
Madison, October 1988.

40. J. Jaffar and J-L. Lassez. Constraint logic programming. In Proceedings of the 14th
ACM POPL, pages 111-119, Munich, January 1987.

41. Paris C. Kanellakis, Gabriel M. Kuper, and Peter Z. Revesz. Constraint query
languages. In Proceedings of the Ninth ACM Symposium on Principles of Database
Systems, pages 299-313, Nashville, Tennessee, April 1990.

42. David Kemp, Divesh Srivastava, and Peter Stuckey. Magic sets and bottom-up

www.manaraa.com

EFFICIENT BOTIOM-UP EVALUATION OF LOGIC PROGRAMS 321

evaluation of well-founded models. In Proceedings of the International Logic Pro
gramming Sympo.qium, pages 337-351, San Diego, CA, U.S.A., October 1991.

43. David Kemp and Peter Stuckey. Semantics of logic programs with aggregates. In
Proceedings of the International Logic Programming Symposium, pages 387-401, San
Diego, CA, U.S.A., October 1991.

44. J.M. Kerisit and J.M. Pugin. Efficient query answering on stratified databases. In
Proc. of the International Conference on Fifth Generation Computer Systems, pages
719-725, Tokyo, Japan, November 1988.

45. Michael Kifer and Ai Li. On the semantics of rule based expert systems with
uncertainty. In Proceedings of 2nd ICDT, Bruges, Belgium, 1988.

46. Michael Kifer and Eliezer L. Lozinskii. A framework for an efficient implementation
of deductive databases. In Proceedings of the Advanced Database Symposium, Tokyo,
Japan, 1986.

47. Michael Kifer and Eliezer L. Lozinskii. SYGRAF: Implementing logic programs in
a database style. IEEE Transactions on Software Engineering, 1988.

48. J. J. King. QUIST: A system for semantic query optimization in relational
databases. In Proceedings of the International Conference on Very Large Databases,
pages 510-517, August 1981.

49. J. Kuittinen, O. Nurmi, S. Sippu, and E. Soisalon-Soininen. Efficient implementa
tion of loops in bottom-up evaluation of logic queries. In Proceedings of the Sixteenth
International Conference on Very Large Databases, August 1990.

50. Michael J. Maher. Semantics of Logic Programs. PhD thesis, Department of Com
puter Science, University of Melbourne, Melbourne, Australia, 1985.

51. Michael J. Maher and Raghu Ramakrishnan. Deja vu in fixpoints of logic programs.
In Proceedings of the Symposium on Logic Programming, Cleveland, Ohio, 1990.

52. Katherine Morris, Jeffrey F. Naughton, Yatin Saraiya, Jeffrey D. Ullman, and Allen
Van Gelder. YAWN! (Yet Another Window on NAIL!). Database Engineering,
December 1987.

53. Katherine Morris, Jeffrey D. Ullman, and Allen Van Gelder. Design overview of
the NAIL! system. In Proceedings of the Third International Conference on Logic
Programming, 1986.

54. A. Motro. SEAVE: The mechanism for verifying user presuppositions. A CM TOIS,
4(4):312-330, October 1986.

55. I. S. Mumick, S. Finkelstein, H. Pirahesh, and R. Ramakrishnan. Magic is relevant.
In Proceedings of the A CM SIGMOD International Conference on Management of
Data, Atlantic City, New Jersey, May 1990.

56. Inderpal S. Mumick, Hamid Pirahesh, and Raghu Ramakrishnan. Duplicates and
aggregates in deductive databases. In Proceedings of the Sixteenth International
COTlfer'ence on Very Large Databases, August 1990.

57. Inderpal Singh Mumick, Sheldon J. Finkelstein, Hamid Pirahesh, and Raghu Ra
makrishnan. Magic conditions. In Proceedings of the Ninth A CM Symposium on
Principles of Database Systems, pages 314-330, Nashville, Tennessee, April 1990.

58. S. Naqvi and R. Krishnamurthy. Database updates in logic programming. In Pro
ceedings of the A CM Symposium on Principles of Database Systems, 1988.

59. Shamim Naqvi and Shalom Tsur. A Logical Language for Dala and Knowledge
Bases. Principles of Computer Science. Computer Science Press, New York, 1989.

60. Jeffrey F. Naughton. Compiling separable recursions. In Proceedings of the SIGMOD
International Symposium on Management of Data, pages 312-319, Chicago, Illinois,
May 1988.

61. Jeffrey F. Naughton. Data independent recursion in deductive databases. Journal
of Computer and System Sciences, 38(2):259-289, April 1989.

62. Jeffrey F. Naughton and Raghu Ramakrishnan. How to forget the past without
repeating it. In Proceedings of the Sixteenth International Conference on Very Large
Databases, August 1990.

63. Jeffrey F. Naughton and Raghu Ramakrishnan. Bottom-up evaluation of logic pro-

www.manaraa.com

322 R. RAMAKRISHNAN ET AL.

grams. In J-L. Lassez, editor, Computational Logic: Essays in Honor of Alan Robin
son. The MIT Press, 1991.

64. Jeffrey F. Naughton, Raghu Ramakrishnan, Yehoshua Sagiv, and Jeffrey D. Ullman.
Argument reduction through factoring. In Proceedings of the Fifteenth International
Conference on Very Large Databases, pages 173-182, Amsterdam, The Netherlands,
August 1989.

65. Jeffrey F. Naughton, Raghu Ramakrishnan, Yehoshua Sagiv, and Jeffrey D. Ullman.
Efficient evaluation of right-, left-, and multi-linear rules. In Proceedings of the
ACM SIGMOD International Conference on Management of Data, pages 235-242,
Portland, Oregon, May 1989.

66. Jeffrey F. Naughton and Yehoshua Sagiv. A decidable class of bounded recursions.
In Proceedings of the ACM Symposium on Principles of Database Systems, pages
227-236, San Diego, California, March 1987.

67. Jeffrey F. Naughton and Yehoshua Sagiv. Minimizing expansions of recursions. In
Hasan Ait-Kaci and Maurice Nivat, editors, Resolution of Equations in Algebraic
Structures, volume 1, pages 321-349, San Diego, California, 1989. Academic Press,
Inc.

68. F.C.N. Pereira and D.H.D. Warren. Parsing as deduction. In Proceedings of the
twenty-first Annual Meeting of the Associationfor Computational Linguistics, 1983.

69. Geoffrey Phipps, Marcia A. Derr, and Kenneth A. Ross. Glue-NAIL!: A deductive
database system. In Proceedings of the ACM SIGMOD Conf. on Management of
Data, pages 308-317, 1991.

70. H. Przymusinska and T.C. Przymusinski. Weakly perfect model semantics for logic
programs. In Proceedings of the Fifth International Conference/Symposium on Logic
Programming, 1988.

71. T.C. Przymusinski. On the declarative semantics of stratified deductive databases.
In J. Minker, editor, Foundations of Deductive Databases and Logic Programming,
pages 193-216, 1988.

72. T.C. Przymusinski. Extended stable semantics for normal and disjunctive programs.
In Seventh International Logic Programming Conference, pages 459-477, 1990.

73. Raghu Ramakrishnan. Magic Templates: A spellbinding approach to logic programs.
In Proceedings of the International Conference on Logic Programming, pages 140-
159, Seattle, Washington, August 1988.

74. Raghu Ramakrishnan. Parallelism in logic programs. In Proceedings of the ACM
Symposium on Principles of Programming Languages, San Francisco, California,
1990.

75. Raghu Ramakrishnan, Catriel Beeri, and Ravi Krishnamurthy. Optimizing exis
tential Datalog queries. In Proceedings of the A CM Symposium on Principles of
Database Systems, pages 89-102, Austin, Texas, March 1988.

76. Raghu Ramakrishnan, Per Bothner, Divesh Srivastava, and S. Sudarshan. Coral:
A database programming language. In Jan Chomicki, editor, Proceedings of the
NACLP '90 Workshop on Deductive Databases, October 1990. Available as Report
TR-CS-90-14, Department of Computing and Information Sciences, Kansas State
University.

77. Raghu Ramakrishnan, Yehoshua Sagiv, Jeffrey D. Ullman, and Moshe Vardi. Proof
tree transformation theorems and their applications. In Proceedings of the ACM
Symposium on Principles of Database Systems, Philadelphia, Pennsylvania, March
1989.

78. Raghu Ramakrishnan, Divesh Srivastava, and S. Sudarshan. Rule ordering in
bottom-up fixpoint evaluation of logic programs. In Proceedings of the Sixteenth
International Conference on Very Large Databases, August 1990.

79. Raghu Ramakrishnan, Divesh Srivastava, and S. Sudarshan. Controlling the search
in bottom-up evaluation. Manuscript, submitted for publication, 1991.

80. Raghu Ramakrishnan and S. Sudarshan. Top-Down vs. Bottom-Up Revisited. In
Proceedings of the International Logic Programming Symposium, 1991.

www.manaraa.com

EmCIENT BOTTOM-UP EVALUATION OF LOGIC PROGRAMS 323

81. Raghu Ramakrishnan and S. Sudarshan. Top-Down vs. Bottom-Up Revisited. In
preparation (full version of paper that appeared in ILPS'91), 1992.

82. Peter Z. Revesz. A closed form for datalog queries with integer order. In Interna
tional Conference on Database Theory, pages 187-201, France, December 1990.

83. J. Rohmer, R. Lescoeur, and J. M. Kerisit. The Alexander method - a technique for
the processing of recursive axioms in deductive database queries. New Generation
Computing, 4:522-528, 1986.

84. Kenneth Ross. Modular Stratification and Magic Sets for DATALOG programs
with negation. In Proceedings of the A CM Symposium on Principles of Database
Systems, pages 161-171, 1990.

85. Kenneth Ross. Modular acyclicity and tail recursion in logic programs. In Proceed
ings of the ACM Symposium on Principles of Database Systems, 1991.

86. Kenneth Ross and Yehoshua Sagiv. Monotonic aggregation in deductive databases.
In Proceedings of the post-ILPS'91 Workshop on Deductive Databases, 1991.

87. Domenico Sacca and Carlo Zaniolo. The generalized counting methods for recursive
logic queries. In Proceedings of the First International Conference on Database
Theory, 1986.

88. Yatin Saraiya. Linearizing nonlinear recursions in polynomial time. In Proceedings of
the ACM SIGACT-SIGART-SIGMOD Symposium on Principles of Database Sys
tems, pages 182-189, Philadelphia, Pennsylvania, March 1989.

89. M. Sassa and E. Goto. A hashing method for fast set operations. Information
Processing Letters, 5(4):31-34, June 1976.

90. Helmut Schmidt. Meta-Level Control for Deductive Database Systems. Lecture
Notes in Computer Science, Number 479. Springer-Verlag, 1991.

91. H. Seki. On the power of Alexander templates. In Proc. of the ACM Symposium
on Principles of Database Systems, pages 150-159, 1989.

92. T. Sellis, C. Lin, and L. Raschid. Implementing large production systems in a
DBMS environment. In Proceeding.s of the ACM SIGMOD Conf. on Management
of Data, pages 401-412, June 1988.

93. Ehud Shapiro. Logic programs with uncertainties: A tool for implementing rule
based systems. In Proceedings of IJCAl, pages 529-532, 1983.

94. Seppo Sippu and Eljas Soisalon-Soinen. An optimization strategy for recursive
queries in logic databases. In Proceedings of the Fourth International Conference
on Data Engineering, Los Angeles, California, 1988.

95. S. Sudarshan and Raghu Ramakrishnan. Aggregation and relevance in deductive
databases. In Pmceedings of the Seventeenth International Conference on Very
Large Databases, September 1991.

96. S. Sudarshan and Raghu Ramakrishnan. Optimizations of bottom-up evaluation
with non-ground terms. In preparation, 1992.

97. S. Sudarshan, Divesh Srivastava, Raghu Ramakrishnan, and Jeff Naughton. Space
optimization in the bottom-up evaluation of logic programs. In Proceedings of the
ACM SIGMOD Conf. on Management of Data, 1991.

98. Jeffrey D. Ullman. Implementation of logical query languages for databases. A CM
Transactions on Database Systems, 10(4):289-321, September 1985.

99. Jeffrey D. Ullman. Bottom-up beats top-down for Datalog. In Proceedings of
the Eighth ACM Symposium on Principles of Database Systems, pages 140-149,
Philadelphia, Pennsylvania, March 1989.

100. Jayen Vaghani, Kotagiri Ramamohanarao, David Kemp, Zoltan Somogyi, and Peter
Stuckey. The Aditi deductive database system. In Proceedings of the NACLP'90
Workshop on Deductive Database Systems, 1990.

101. M. H. Van Emden. Quantitative deduction and its fipoint theory. Journal of Logic
Programming, (1):37-53, 1986.

102. M. H. van Emden and R. A. Kowalski. The semantics of predicate logic a.s a
programming language. Journal of the ACM, 23(4):733-742, October 1976.

103. A. Van Gelder, IC Ross, and J. S. Schlipf. Unfounded sets and well-founded scman-

www.manaraa.com

324 R. RAMAKRISHNAN ET AL.

tics for general logic programs. Journal of the ACM, 38(3):620-650, 1991.
104. Allen Van Gelder. A message passing framework for logical query evaluation. In Pro

ceedings of the ACM SIGMOD International Conference on Management of Data,
pages 349-362, Washington, DC, May 1986.

105. Moshe Y. Vardi. Decidability and undecidability results for bounded ness of linear
recursive queries. In Proceedings of the Seventh ACM Symposium on Principles of
Database Systems, pages 341-351, Austin, Texas, March 1988.

106. L. Vieille, P. Bayer, and V. Kiichenhoff. Integrity checking and materialized views
handling by update propagation in the EKS-VI system. Technical report, CER
MICS - Ecole Nationale Des Ponts Et Chaussees, France, June 1991. Papport de
Recherche, CERMICS 91.1.

107. L. Vieille, P. Bayer, V. Kiichenhoff, and A. Lefebvre. EKS-Vl, a short overview. In
AAAI-90 Workshop on Knowledge Base Management Systems, 1990.

108. Laurent Vieille. Recursive axioms in deductive databases: The query-sub query ap
proach. In Proceedings of the First International Conference on Expert Database
Systems, pages 179-193, Charleston, South Carolina, 1986.

109. Laurent Vieille. Database complete proof procedures based on SLD-resolution. In
Proceedings of the Fourth International Conference on Logic Programming, pages
74-103, 1987.

110. Laurent VieiIle. From QSQ towards QoSaQ: Global optimizations of recursive
queries. In Proc. 2nd International Conference on Expert Database Systems, April
1988.

111. J. Widom, R.J. Cochrane, and B. G. Lindsay. Implementing set-oriented production
rules as an extension to Starburst. In Proceedings of the International Conference
on Very Large Databases, pages 275-285, August 1991.

112. O. Wolfson and A. Silberschatz. Sharing the load of logic program evaluations. In
Proceedings of the 7th ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, Philadelphia, Pennsylvania, March 1989.

113. W. Zhang, C. T. Yu, and D. Troy. A necessary and sufficient condition to linearize
doubly recursive programs in logic databases. Unpublished manuscript, Department
of EECS, University of Illinois at Chicago, 1988.

www.manaraa.com

PROVING CORRECTNESS OF EXECUTABLE PROGRAMS

KIT LESTER

CBng., School of Information Science
Portsmouth Polytechnic

Southsea P04 8JF, England.

February 14, 1992

Abstract. We claim to be "Software Engineers", yet our methods of software construction are mainly
intuitive, and generally have an air of "string and chewing gum" construction. If we are truly to Engi
neer programs, we instead need mathematically-based methods either of constructing the programs,
or of verifying intuitively-constructed programs.! Most previous papers on such mathematical meth
ods have dealt only with the correctness of program source code; some have dealt additionally with
program specification; unusually, this paper further takes the discussion all the way to the executable
program?

1. Introduction

A typical definition of "Engineering" in general is

"The effective manipulation of our environment to our advantage using methods
based on mathematical understanding of the relevant aspects of the environ
ment."

There are two main thrusts to that definition:
"effective"; and
"mathematical understanding".

For most engineering disciplines, effective is usually interpreted in terms of having
standard design methods and construction processes, together with understand
ings of relevant economic, logistic, legal, contractual and ethical issues. In the
software-construction domain, we have made some progress in these aspects of
"effectiveness" .

By contrast, our mathematical understanding of how to construct software is
limited, and is seldom capitalized upon in real projects. So the purpose of this paper

1 This is no new observation: at the inaugural conference of EDSAC on 24th June 1949, Alan
Turing said:

"It is of course important that some efforts be made to verify the correctness of the assertions that
are made about a routine. There are essentially two types of method available, the theoretical and
the experimental. In the extreme form of the theoretical method, a watertight mathematical proof
is provided for the assertion. In the extreme variety of the experimental method, the routine is
tried out on the machine with a variety of initial conditions."

Butin the "computer explosion" of the 1960's, that clarity of vision was lost, and we almost exclusively
resorted to Turing'S extreme variety of experimental method. The ideas didn't die in the '60s - most
subsequent work seems to trace back ultimately to Floyd 67 - but were largely ignored, then and
since.

2 If we want a 100% reliable system, we will also need proven hardware. This places a higher level
of demand on the Electronic Engineers than they normally meet for more than small building-blocks
of a CPU.

325

P. Dewilde and f. Vandewalle (eds.), Computer Systems and Software Engineering, 325-353.
© 1992 Kluwer Academic Publishers.

www.manaraa.com

326 K.LESTER

is to overview3 what we have or would desire throughout the software construction
process, all the way to the executable machine code.

Specifically, the paper discusses:
whether and what form of "mathematical understanding" we need;
issues in specification;
issues in source code construction;
issues in translation to machine code.

The last of those has not been widely discussed before, so (more than the other
sub-topics) it's given extended consideration throughout the paper, from title to
references.

2. Basic Issues

2.1. BUT DO WE NEED "MATHEMATICAL UNDERSTANDING" IN SOFTWARE CON-

STRUCTION?

It's painfully evident to anyone who regularly reads a computing trade newspaper
that there are unacceptably-frequent news items concerning software that has gone
technically "wrong" in up to three main ways:4

the system behaves differently than required in its specification;
the system is slower than required by its specification, or lacks some capacity
required by its specification; or
the specification doesn't correspond to what the user needed ...

And for each fiasco that gets publicised, how many do the trade press not hear
about?

So clearly there's a need for better methods than are normally used!
The question then is "what sort of better method?"
Since the "Software Crisis" period around 1970 there have been a number of

minor technical improvements to our intuition-based methods. The most significant
of those improvements is that we have begun to construct software in a modular
fashion5, with the individual module small enough to be (we hope) understandable,

3 This requires the paper to be tutorial in nature, with various consequences such as occasional
"folksy" style, heavy dependence on footnotes to sidetrack material distracting at a first reading,
incremental development of some of the more complex concepts, etc.

4 Projects also often go wrong in non-technical ways: e.g. delivered late or incomplete; over budget,
etc. In one recent case, a contractor delivered software for a CPU that had, during the development,
ceased to be sold: the purchaser hadn't realized, and the contractor "hadn't appreciated the need to
draw it to the purchaser's attention".

5 Although the word "module" is recent, mathematicians have been using recognizably modular
methods since at least Descartes: mechanical engineers have been bolting separately-designed units
together since the development of the British Standard Whitworth thread: and electronics engineers
have been plugging independently-designed and constructed circuit boards into backplanes since at
least the early 1930's. Modularization is hardly a novel Engineering principle.

(There's a double link to Computing history here: Joseph Whitworth devised his thread for nuts
and bolts as part of his work as "Chief Mechanic" to Charles Babbage's attempt to build a "Universal
Calculating Engine" in the 1830's. And Babbage's programmer, Ada Augusta Lovelace, even foresaw

www.manaraa.com

PROVING CORRECfNESS OF EXECUTABLE PROGRAMS 327

and therefore more probably correct - but with what statistical confidence level
on that "probably"? To fully capitalize on that modularization we need to use a
language that helps enforce modularization (e.g. Ada, Eiffel and certain others of
its object-oriented brethren, Modula, Extended Pascal), but these languages are
even now used for only a minority of applications - most programs are still built
using 1960's technology ...

At best, these improvements mitigate the problems: at worst, we neglect to use
the improvements. The only way in which the "Software Crisis" has passed is that
we've got used to the problems.

Yet, since 1970, we have built more and more complex computer systems. In
the 1980's this has been compounded by an increasing proportion of these complex
systems being in some way "critical" 6 , meaning that faults in their design or
construction would lead to utterly unacceptable consequences ranging from death
and injury to major financial losses. For these systems, we need that they be correct,
not "probably" correct!7

So we need much more powerful improvements in our methods than those of
the last two decades.

Whenever any of the traditional Engineering disciplines have come to the point
of needing "better methods", the better methods that evolved were mathematically
based. Likewise, in software construction mathematics-based methods have been
proposed, and (like the other disciplines) we see no other kinds of better basis.
We've even developed some mathematically-based methods to the point where
they are usable for substantial classes of program, now, at some cost. To a large
extent the cost appears to be that we lack economies of scale - e.g. first use of such
methods in a company will mean a heavy training bill. (The notations themselves
can be learnt as quickly as a programming language: it's the associated methods
which take time to acquire. But there are possible cost savings as well: see later.)

If we have a problem in developing these new methods, it's that we see too
many detailed possibilities. Quite apart from the resulting inefficiencies of lacking
an obvious Standard method, the differences have been a distraction, with much
energy spent on trying to discover which variant is "best" when currently we
probably only have preliminary proposals. To date, most of the "mathematical
methods" proposed for software "correctness" have been mainly oriented towards
ensuring behaviour according to specification, but we'll see that some have spin-

the need to break programs down into manageable parts. Ada Augusta's contribution especially
makes the pre-1970 non-modularization seem a neglect, rather than later use of modularization being
a success.)

6 E.g. life-critical systems such as fiy-by-wire planes (including the Boeing "400 series" and the
Airbus 320 - i.e. passenger "jumbos"); medical life-support systems; control systems for petrol
refineries; financially-critical systems such as major banking and insurance systems; etc.

7 For bigger programs, this "probably" almost means "probably not": suppose we could put a
statistical measure of confidence on pieces of program, and had 99.9% confidence in each module
of a 1000-module system - i.e. for each module, a .999 probability that it is error-free - then the
probability of the whole system being error-free will be .999 raised to the power 1000, which is .3677
- i.e. almost a two-thirds probability that at least one module has an error.

www.manaraa.com

328 K.LESTER

offs towards getting the specification right. In many cases, a proof of "correct
behaviour" provides infonnation that could support proof of adequate speed or
capacity. So the keys appear to be (1) correctness of the specification, and (2)
correctness of the code with respect to the specification.

Proof could also eliminate much of the need for testing, and its considerable
cost.s And tests don't ever tell us that code is correct - they can only tell us that
either there are errors or that there does not appear to be errors. And appearance
isn't enough, just because we dido't think of some test that would demonstrate an
unimaginable kind of bug that just happens to be present.9 So we would replace
one cost by another - and we don't yet know which would be the greater - but
would start to have the 100% confidence in our code which we never should have
with testing.

2.2. FORMAL AND RIGOROUS METHODS IN MATHEMATICS AND ENGINEERING

So we need a mathematical method: and that means mathematical notation. A
common misunderstanding is that mathematical notation exists as some sort of an
end in itself, but this is actually the exact opposite of its purpose - as the eminent
mathematician Hennann Weyl wrote in 1923:

"Just as everybody must strive to learn language and writing before he can use
them freely for the expression of his thoughts, here too there is only one way
to escape the weight of fonnulae. It is to acquire such power over the tool ...
that, unhampered by fonnal technique, one can turn to the real problem. lOlO

Some of the proposed notations look superficially like traditional mathematics
notations, some look more like program text: it doesn't matter which of those we
choose so long as it frees us to express the necessary ideas in a way we can use.
The current notations achieve that goal to a fair extent, in that they are usable but
cumbersome: we need to do better.

Most Engineering disciplines have found classical Newtonian mathematics fit
ted their needs well for describing mechanical movement, fluctuations in fluid and

8 Non-critical software projects typically report 30% to 40% of the total effort and cost going into
testing: critical system testing costs even more.

9 In the early 1970's I added a magtape driver to a disk-based operating system. It worked well
until June 1975, when it seemed that interrupts seemed to "get lost". All through that summer it
misbehaved, and we investigated hardware and software in vain for the fault: then the problem went
away. It came back in June 1976: at which point we realized that this was a second hot summer: and
that was our clue. It turned out that even in an air-conditioned computer room the tape drives got hot
enough that the oil on them got thinner, the drives ran faster, and that there always had been a race
between the hardware giving the interrupt and the software being ready to handle it, and now the
hardware won the race just the couple of times in a thousand that made the tape drives unusable. In
an air-conditioned room, who thinks to test program at different temperatures? Then there was the
error I spotted over someone's shoulder in code that had worked well for several years: but that just
happened to be the January of a leap year ...

10 This quotation could also be a motto for our efforts to design better programming languages,
IPSE tools, GUIs ...

www.manaraa.com

PROVING CORRECfNESS OF EXECUTABLE PROGRAMS 329

electrical flows, etc. However, the Newtonian notion of "time" as being continuous
doesn't correspond to the discrete notion of time in an imperative program, where
"before" an instruction is a quite separate "time" than "after" the instruction. The
non-classical nature of imperative "time" has been one of the motivations for the
development of the functional languages, and the so-called "fifth generation" logic
languages, both of which try to avoid any notion of time. 11 However, the functional
and logic languages have new severe problems of their ownl2, so it seems worth
while to try to develop "discrete-timed" mathematics for imperative programming.

Instead of Newtownian mechanics, the part of traditional mathematics which
seems most appropriate to our needs is "predicate logic", in which we make state
ments which we hope we will be able to "prove" as the results of theorems. Here's
a couple of typical "predicate logic" statements about the arithmetic of natural (i.e.
non-negative) integers:

"There exists (at least) one integer which is the sum of all its devisors";
"Every even number can be written as the sum of three squares" .13

Writing those in a notation resembling programming language:

exists N in NATURAL =>
(N = (sigma (I for (I in 1 .. N) and (N div I = 0))))

for all N in NATURAL, (exists A,B,C in NATURAL => 2*N=A
2+B2+C2) 14

These predicate logic statements about arithmetic are rather like the kind of "facts"
(or in Mathematician's jargon, "assertions") which reflect our intent at points before
and after instructions in an imperative program: e.g.

"At this place in the program, elements 1 to N of the array A are in ascending
sorted order"

which could be written in program-like notation as:

11 But, for example, the "cut" operator in PROLOG introduces a sort of "try this, and then maybe
try that" kind of time.

12 For example, real-time PROLOG has turned out expensive, rather than successful.
13 The first of those is certainly true: 6=1 +2+3; 28=1+2+4+7+14; even 1=1! The second ~pears

to be true if we include zero as a non-nej1;ative integer: 2 = 12 + 12; 4 = 22; 6 = 22 + 1 + 12;
8 = 22 + 22; 10 = 32 + 12; 12 = 22 + i'l + 22; 14 = 32 + 22 + 12; 16 = 42; 18 = 42 + 12 + 12;
20 = 42 + 22 ; ••• but no-one has either ever found a counter-example (despite searches up into the
billions) or proven the statement "true".

14 Notice the trick there to avoid defining "even-ness" - the statement has been notated more as
"for every integer, twice the integer can be written I find the resulting notation more readable than
= for all N in NATURAL, ((exists M in NATURAL => N = 2 * M)

=> (exists A,B,C in NATURAL => N=A2+B2 +C2)
which more directly translates the "for every even number" by expanding it into "for every number,
if there is a number which it doubles, then From this we learn two things:

a little deviousness is often needed to map English onto formal notations (perhaps because the
English is vague? - see later ...); and
there are often multiple ways of notating an English version of a statement: it may not be easy to
show they are equivalent; and one may turn out to be much easier to work with than another.

But programmers should be quite familiar with these phenomena, because they also arise in the
transition from English specification/design into program code.

www.manaraa.com

330 K. LESTER

for all I in 1.. (N-l), (A(I) < A(I+l)) 15

If we associate a set of such "facts" with each relevant place in a program, then
each instruction should correspond to the change between the set of facts we have
"before" it, and the set of facts "after" it. l6

So for the program as a whole we need a set of facts reflecting what should be
true before executing it - i.e. a description of its environment, and what would be
acceptable inputs - and a set of facts reflecting what should be true after executing
it - i.e. a description of how its output relates to its input.

The same could apply to each routine and instruction of the program: the inter
relationships of the sets of facts and the instructions themselves could then be
used to "prove" that the program code is a correct implementation relative to the
before-and-after fact-sets of the whole program.

Some facts might more naturally be associated with data at all times, rather than
particular places in the code (i.e. specific times). The fact may concern a single
variable (e.g. "this integer variable should always contain an even number in a
particular range") or a combination of variables (e.g. "the sum of these two integer
variables should always be even", or "the value of this integer variable always
tells us what number of elements at the start of that array are currently in use").
The "always" in such a fact about variables usually will mean "from the time the
variables are initialized until they cease to exist", rather than "from the time they
start to exist...". These data-related facts aren't essential - but avoiding one will
usually just mean replicating it at many instruction-related places.

Such sets of facts could be used while we do the designing to ensure that the
design is correct; or to check a finished program; or some hybrid of those.

Whichever way we use the facts, there are a large number of proofs to make: and
so we face the issue of how to make those proofs. Clearly, theorem -proving software
to support this process is highly desirable: but certain features of what is needed
(see later) place different requirements on this theorem-prover than those of the
AI community. Currently, theorem-provers in general aren't in general as powerful
as intuition-based proving of a human with a mathematical aptitudel7 , so software
to deduce all the sets of facts for a program (including between instructions) is
not yet available. However, there are now a number of systems that can prove
large classes of programs at source-code level by completing the sets of facts from
human-provided key facts as "stepping stones" .18

15 For a more extensive example, see the specification part of the Appendix.
16 In practice the full sets of facts can be very large, with many of them reflecting the effects of

instructions well back, and not needed or made different for quite a distance. So if we were to write the
sets down, we would have an unmanageably large text unless·we carry fOIWard these long-distance
facts implicitly, and start writing them down explicitly again only just before instructions whose 10 gic
depends on the facts, or changes them.

17 However, there are a few instances of spectacular proofs found by theorem-proving software,
and which humans hadn't "spotted".

18 From this point of view, the Mathematician's word "assertion" is more appropriate than my word
"fact", because what we provide is a claim which we hope can be proven in that context.

www.manaraa.com

PROVING CORRECTNESS OF EXECUTABLE PROGRAMS 331

Of course, the human-provided facts tend to be the few "hard" ones: what the
software does is (1) remove the drudgery of the many easy ones, and (2) defend
against the fallacies of logic to which humans are prone.

We can also draw another useful parallel from how traditional Mathematicians
and Engineers work. As well as the full "formal method" presumed above, Math
ematicians often skip easy parts of proofs with just a sketch of how they believe
it could be completed. Likewise, Engineers often find that precise formulae re
flecting what they are working with are intractable for design purposes, so instead
they use "rule of thumb" formulae which are more conservative than the "real"
formulae: as well as simplicity, the Engineer gains a valuable margin of error.
These sketch-of-formal methods are called "rigorous".

In software construction, our opportunity to drop to "rigorous" methods rather
than fully-formal methods arises from most critical software systems having only
a few modules which are critical, and therefore needing fully-formal proof. Fur
thermore, we can often design so that a small number of simple modules need
proof, instead of one complex module. 19 Clearly, the "needs proof' criterion has
a subjective element, but clear guidelines (see M.o.D 1991b, for example) can be
laid down to eliminate much of that subjectivity: such practices are quite normal
in other Engineering disciplines.2o

3. From User Need to Specification

Currently, specifications are usually written in English: but to be able to "prove"
anything relative to a specification, we will need the specification in formal notation.
Fortunately, that only applies to those aspects of the specification which relate to
the parts of the program meriting "proof' (irrespective of whether the proof be
formal or merely rigorous).21

19 Further: if we can tolerate a warning when there is a malfunction, rather than assurance that
there will never be a malfunction, we can often design so that a few simple modules validate the
output of critical complex modules. For a naive example, checking a square root is much simpler than
calculating it. Less trivial examples of "checking" being easier than "doing" include solution of partial
differential equations and (as we have just noted) finishing a program-proof from human-provided
key "facts".

20 Both the difficulty of complete formal proofs of programs and failure to appreciate that sensible
Mathematicians fall back from fully-formal methods only when appropriate have been used as
perverse arguments that we should continue to use unreliable informal methods alone in program
development: for example Demilio et al. 79 makes both arguments at once! Mankind would make
little progress if we gave up on everything that's difficult.

21 We have a risk here: from the specification we might proceed to a program design which calls
for more of the specification to be formal ... an expensive way of discovering which parts of the
specification are critical.

www.manaraa.com

332 K.LESTER

3.1. VALIDATION22 OF THE SPECIFICATION

As noted earlier, many projects run into trouble because the specification of the
program defines a product which does not adequately satisfy the user's need, or
loopholes which permit interpretations conflicting with the user's need. It could
be that the analyst who studied the user requirement (or the user he consulted)
failed to properly understand the requirement, or failed to express it; maybe the
specifier misunderstood the requirements definition, conceived an inappropriate
product, or mis-stated his specification of the product. So the specification can be
vague, self-contradictory, incomplete, or just plain wrong. Common variations of
"wrong" include that the requirements analyst or specifier implicitly depended on
an invalid assumption, didn't know some relevant fact23 , or overlooked something
he did know.

The most common tactic for validating a specification document is to give it to
the user, and ask him if it he thinks it describes something would meet his need. The
user is unlikely to be able to fully understand a specification in computer-jargon
English, making the tactic dubious: but the user is very unlikely to understand
anything from a formal specification24 , making the tactic totally inappropriate. So
it seems paradoxical that a formal specification can facilitate validation in various
ways:

Vagueness is eliminated: apart from this being desirable in itself, removing
"fuzziness" of English makes clashes and gaps more evident, so they are
less likely to be written, and if they do get written they are more likely to
be discovered (either by a human checker, or - not possible for English
specifications - by software doing the checking).
There is the possibility of generating a prototype from a formal specifica
tion, either by a program which inputs the formal specification and outputs
source code of a prototype, or by a program that inputs the formal speci-

22 The words "verification" and "validation" are used in this paper in the sense that "verification"
means guaranteeing something in an absolute sense, but "validation" means guaranteeing something
within real-world limits (e.g., against the ill-defined, as in this case).

23 I once carefully specified a program with output on a colour VDU to be tolerant of red-green
colour-blind users, but I'd never heard of orange-blue colour-blindness. I found out uncomfortably
late.

24 But Dandanell et al. 91 reports formal specification applications in the automation of the Meteor
line of the Paris Metro, monitoring of ship engines, planning and design of communications nets,
user interfaces for workstations, business transaction systems, monitoring of mining operations, and
satellite-based geophysics experiments: only two of those (the networks and the VI) have users who
are primarily computer oriented, but all appear to have users who have developed the necessary
familiarity with formal methods. Similarly for O'Neill et al 88, where the application was control
of jet engines for civil airliners. Mukherjee et al. 91 even reports a formal specification for a safety
critical situation with only a simulation intended but 1U) final computer application. Where the user
need is great enough, users are starting to invest in this capability, themselves. Another demonstration
that formal methods are increasingly considered is that in one Proceedings of another conference
not concerned primarily with formal methods we discover the first three papers - Peters et al. 90,
Hird 90, Lees 90 - concern aspects of formal methods: was that a covert message from the program
committee?

www.manaraa.com

PROVING CORRECfNESS OF EXECUTABLE PROGRAMS 333

fication and then itself simulates the specified product. A variation is more
akin to expert-system methods: a program that inputs the formal specification
and then answers questions about how the specified product will behave in
response to given input: this last has the advantage that it will expose when
the specification permits of alternative behaviours, whereas an "executable
prototype" will only exhibit one of those behaviours - and which might not
be the one which will take place for the final product.

And in any case, the formal specification can be back-translated into English, and
that can be given to the user to approve.25

3.2. PROBLEMS EVEN WITH FORMAL SPECIFICATIONS

With prototypes and back-translations, one can have a high confidence that the
specification doesn't say anything contrary to what the user wanted, but it's still
hard to be sure that a formal specification says enough: omission is still possible.
It's also possible that the real world is too complex to model accurately in the spec
ification: but that doesn't matter if the specification's mismatch with the real world
is consistently conservative. Equally unfortunate, there's the insidious possibility
that what the user wanted was misguided, and even dangerous in certain circum
stances: in such a context a "safe" program would, in a threatening environment,
refuse to behave according to its specification, because proven "correctness to the
specification" is then exactly what one doesn't want.26

One problem with certain formal specifications, or parts of them, is that they
may in effect be equivalent to the program. Obvious examples of this include
specifications which require some Physical or Financial formula to be evaluated,
or a Tax table to be looked up. In these cases - or at least in those parts of their
applications - the need for formal specification seems slight.

A final and rather silly problem is that for some applications the formal specifi
cation may be much bigger than the eventual program! On the other hand, there are
plenty of intuition-designed systems where the bulk of design documents far ex
ceeds the bulk of the program listings. A bulky design in English has the pragmatic
problem of its vagueness; a bulky formal specification (or design - see section
4) instead has the problem of unfamiliarity of notation; both have the difficulty in
finding one's way around the document.

In short, formal specification avoids or lessens some problems with English
specifications, but doesn't eliminate them.

25 Advantages: the back-translated English version will be more precise (hence less to have gaps
or clashes) than a version written first in English; disadvantages: the back-translated English will be
more than ordinarily turgid, pedantic, and hard to read.

26 Race 90 describes a case in which an unavoidable real-world mismatch turned out to be dis
astrously non-conservative in hard-to-foresee circumstances that) arose unfortunately early. See
Holzapfel et al 88 for more discussion of this "safe-versus-correct" issue.

www.manaraa.com

334 KLESTER

3.3. NOTATION OF FORMAL SPECIFICATIONS AND ASSERTIONS

There are two main styles of notation for formal specifications and assertions:
maths-like and program-like.27 The main maths-like notation is VDM (Jones 86):
major descendants of it are Z (McMorran et al., 89) and the RAISE specification
language, RSL (Eriksen et al., 91; George, 91). The main program-like notation is
ANNA (Krieg-Brueckner 80, Luckham et al' 87): a major descendant of it is the
SPARK Ada subset (Carre, 90).

The main criterion for choice between them is whether one is first and foremost
a mathematician or a programmer: for most people that determines with which
style they feel comfortable.28

Secondary criteria include
the cost and availability of software tools to operate on the notation, and the
hardware to display and print it: but the cost difference is small compared
to the cost of the rest of the software one would want for serious formal
manipulations;29
how to relate a fragment of specification or other assertion to the resulting par
ticular fragment of program text: embedding program-like assertions in actual
program text seems natural, and usually can be achieved quite simply, but for
maths-like assertions one tends to want separate documents for assertions and
program, and hypertext-like pointers between the documents.3o

A more fundamental difference between the two styles is that maths-like notation
is almost always used to "build the product right" by supporting and checking
each top-down refinement step in designing and coding the program, whereas
program-like notations also are used for after-the-fact verification of previously
written code. Since real projects almost always have at least elements of bottom-up
design (in the use of i/o libraries, if nothing else), and since there already exists a
vast amount of code which merits tighter checking, the dual-purpose orientation of
program-like notations seems more sensible to some people: others try to get the
advantages of both styles by using maths-like notation to write a program whose

27 There have been many attempts to impose other classifications on the notations and the systems
underlying them, notably a division between systems which specify by saying "here is a model which
the product should behave like" versus those which specify by saying "here is a test which we can
use to recognise the product": but in practice the distinctions were blurred by the proposal of new
systems which didn't fit nicely into the preconceived categories.

28 Because the two forms of notation are equivalent in power, this is safer than the corresponding
criterion for choice of a programming language for a given application that "I know one programming
language, and will use it for this application with no regard as to whether the language is appropriate
for the application".

29 On the other hand, the book-production process of this paper makes maths-like notation prob
lematic: accordingly, all the examples in this paper are ANNA-like.

30 In ANNA and SPARK the embedding is achieved as comments which start with special "flag"
characters. The program can then be submitted to a normal compiler, and the embedded annotations
are ignored, whereas an ANNA- or SPARK-processor will ignore only "other" comments. The only
restriction this embedding imposes on the programming language is that "normal" comments can't
start with the flag characters - a minor restriction, and easy to live with.

www.manaraa.com

PROVING CORRECTNESS OF EXECUTABLE PROGRAMS

code includes program-like annotations.

4. From Specification to Source Code

4.1. WAYS OF WORKING

335

Those who use maths-like notation generally work by doing a top-down design of
the program, always notating the designs in the formal notation, and at each step
proving that the design defines a behaviour consistent with but more specific than
that at the prior design step. Each individual step is called a "refinement" of the
design. At some stage they need to move into program code: some do that as a last
design/implementation stage with means to prove the program code reflects the
final maths-notation design (or refines it); some make the move to program-like
code (or pseudo-code) earlier, and then continue refining the maths-notation and
code in parallel. 31

At the earlier top-down stages, the maths-like notations seem to have more
expressive power (i.e. more concise, more understandable once one is sufficiently
familiar, and needing less deviousness to say what one wants to say). However, they
have the problem that one will shift into a programming language sometime, so
there's more to know and hence apparently higher training delays and costs than for
a program-like notation: it's also been suggested that they demand higher-calibre
staff.

Using program-like notation, there are two ways of working:
starting with specifications in the annotated program-like notation, repeatedly
refine program (both code/algorithm and data) and annotations in parallel
until the program is executable (i.e. essentially similar to the method with
maths-like notation, but without the problem of deciding of when and how to
shift into program code) - this is called "formal design"; or
write the program intuitively, in the orthodox way, then later add assertions
and develop the proof of the program in terms of the assertions - tllis is
sometimes called "program proof'.

In short, that's choice between "build right" and "build, then later show right".
These ways of working have different disadvantages:

"build right" implies carrying a heavy additional burden throughout the design
process;
"build then show right" has the risk that when there is difficulty in finding a
proof32 , it will often not be clear whether the problem is that the human or

31 There's a hope that one day we will be able to write software that will translate a formal design
into efficient program code. To some extent that's already been realized as "compilers" for "very high
level languages" such as SETL _. but the efficiency of the produced code is poor: the RAISE system
apparently includes tools to generate Ada or C++ from finished designs in RSL, their formal notation.
There's been more success in restricted application areas, e.g. generating certain parts of compilers.

32 This form of proof is complicated by its being rather different from traditional mathematical
proofs. In a traditional mathematical proof, one has a number of axioms which are generally accepted

www.manaraa.com

336 K.LESTER

software just hasn't found a proof, or whether the assertions doen't express
enough infonnation about a correct program, or whether the program is just
plain wrong. 33.

In a sense, these two ways of working correspond respectively to developing the
proof top-down versus developing it bottom-up.

For a previously-written program, a later attempt to fit a top-down proof to it
is bound to be difficult, which tends inline us against the maths-like notations for
such work, though the designers of RAISE have attempted to limit this problem
for their RSL specification language.

Going in the other direction, certain aspects of the SPARK Ada-subset of the
SPADE project were decided upon to make it a more suitable target language for
designs in YDM and Z (if one wants to use SPARK only as the implementation
language, rather than as the specification/design language as well).

4.2. THE TARGET LANGUAGE34

In what programming language will the program ultimately be implemented? For
mal design all the way to assembler-level has been done, but subject to a new class
of problems (see section 5) which then tangle into those discussed above. So the

as true (e.g. that if "a=b" then "b=a" - an alternative view is that this is part of the definition of "="),
and a number of already-proven assertions: from the axioms and proven assertions certain deduction
rules can be used to deduce further assertions which are considered "proven". In our case, we have
a fixed set of axioms, but a set of assertions is local to a partiCUlar place in the program: assuming
that assertion is true, we want to either prove the assertions at the next "place" true, or even deduce
what the next set of assertions should be. The assertions at "the next place" don't need to be complete
(usually, the "complete" set of assertions would be infinite) but they do need to be adequate that we
can prove everything we need "at the next place". So at a sequence of places we want a sequence
of sets of assertions (each really defining a probably-infinite set theorems), never losing information
which will be needed later. When there is control flow, things get more complicated: for example at
the end of an "if" statement, and at the end of its branches:

if ... then

{AI, A2, ... Ap} - assertions at the end of the 'then' branch
else

{BI , B2, .. . Bq } - assertions at the end of the' else' branch
end if;
{CI, C2, ... Cr } - assertions after the 'if' statement

Here, we want to find assertions Ci which are implied by the end-of-then assertions and also by the
end-of-else assertions, and which preserve all the information we will need later. In the extreme case
that we want to lose no information, we must find the Ci so that collectively they lead to all the
theorems which are in the intersection of the set of theorems deducible from the end-of-then assertions
and of the set of theorems deducible from the end-of -else assertions: this is both most unlike orthodox
theorem-proving and seems to lead us into a maze of undecidabilities and impossibilities related to
Godel's theorem and Turing's hypothesis.

33 Of course, a touch of orthodox testing may easily show the problem is that the program is wrong:
but if the tests don't show symptoms of errors, then the problem remains.

34 Carre 89a gives a longer (and rather different) discussion of this topic.

www.manaraa.com

PROVING CORRECTNESS OF EXECUTABLE PROGRAMS 337

most common current approach seems to be to use some high-level language as a
stepping-stone, keeping the two sets of problems apart.

That raises the issue of whether any current orthodox high-level language is
suitable (perhaps in a suitably-annotated form): the short answer seems to be "not
entirely". Criteria for a suitable language would include:

simplicity;
modularity (so we can build the proofs as combinations of many small theo
rems, i.e. avoiding "big" theorems for which we have exponentially-greater
difficulty devising proofs);
well-definedness (and machine-independence, in particular).

Some languages are clearly unsuitable: for example the language C was designed
for low-level efficiency with convenience of use, and consequently leaves much as
"what the CPU provides".

Pascal has some features that seem deceptively simple when described in En
glish, but which tum out very imprecise when formally defined - "variant records"
are the most notorious example (see Habermann 73 for more). It also leaves its char
acter type and (more damagingly) its numeric types as "what the CPU provides".
Original Pascal lacked large-scale modularization facilities: the recent "Extended
Pascal" standard provides suitable facilities at the price of the simplicity of original
Pascal.

Similar comments apply to Fortran - EQUIVALENCE is a major impediment
to precise definition, numeric types are "what the machine provides", Fortran-90
provides large-scale modules at the cost of simplicity.

Ada is too big! - and so is not simple: consequently it's too involuted to define
precisely (there have been expensive efforts which have come close, though).
On the other hand, its numerics are unusually well-defined, and there are few
machine-dependant features (but a number of implementor choices which the
implementor must document). The modularization was designed in from the start,
rather than added after the fact, and so is basically simple and well-integrated with
the rest of the language (however, "extras" to the modularization facilities make the
modularization seem complex: "extensive" is a more perceptive description). Ada
was specifically designed for applications calling for a high degree of reliability,
and so tends to what we need - but just too much of what we need. An early
version of Ada (Ichbiah 79) even included an "assert" statement which was dropped
from the eventual 1983 standard under pressure from "practical" programmers, but
nonetheless still left behind a mentality close to what we need.

Eiffel (Meyer 92) may prove nearer to what we want:

it clearly profits from the strengths and weaknesses of Ada (especially the
strength of Ada's "design by contract" philosophy);

it even (re)introduces assertions as part of the language (with a presumption
that EIFFEL compilers will check whether programs conform to the assertions
- but perhaps by runtime monitoring);

www.manaraa.com

338 K.LESTER

but it introduces new language facilities (notably Object-Orientation) which
cause additional difficulties for proof development (as if it wasn't already
difficult enough!)

It also has the disadvantage of not yet being widely available, and in particular
isn't yet much known in the "secure" programming community.

All of which leads us to the question of whether we can design a language with
suitability for verification as a major criterion. A number of such languages have
been attempted - e.g. EUCLID (Lampson et al. 77, London et al. 78), Gypsy
(Ambler at al. 77) and NewSpeak (Currie 86) - but at the pragmatic programming
level they all seem to be quirky, and so have not been widely used.

It seems then that we need a compromise: a common one is a subset of Ada.
The SPARK Ada subset of the SPADE project (Carre et al90) imposes quite severe
restrictions on Ada: many eliminate implementor choices (such as of orders of
execution in certain constructs) which the designers of Ada provided to enable the
implementor to optimize, but other restrictions are clearly to reduce the complexity
(and hence size and cost) of the tools needed to process SPARK programs. ANNA
(Krieg-Brueckner et al. 80, Luckham et al 87) makes a brave attempt to provide
ways of annotating even the highly machine-dependent constructs provided in Ada
for bit-level control of peripherals, with the result that their toolset is not yet very
extensive.35

5. From Source Code to Machine Code

Presuming that we do construct a verified program in an orthodox high-level
programming language (whether by formal design or by informal-design-then
proof), we then need to obtain a correct machine code translation of the high-level
source code. The ideal would be to have a formally verified compiler: correct input
to correct translator means correct output (otherwise, the translator isn't correct).

Unfortunately, compilers are big and complex programs, so any proof or formal
design of one will be correspondingly big. Nor is there an obvious way to make the
"a few simple proven modules to check the rest" trick apply - most of a compiler
is critical to the correctness of the translation it does.

Worse, to get an executable version of the compiler, we would need to translate
it using another proven compiler (one for the language in which the compiler is
written). So to get a proven compiler, we need another previously-proven compiler,
for which we need ... How do we get started?36

Finally, as we shall see in section 5.1, itis difficult to give precise definitions to
instruction sets of real CPUs: how can we have a correct translation to something

35 In the case of RAISE being used to generate Ada or C++, it is not clear how generous a subset
of Ada or C++ is used.

36 If the compiler is written in its own language (quite common for languages such as Pascal,
Modula, Ada, C, EIFFEL, by means of a tactic called "bootstrapping"), we would need to compile
it through its already-proven self in order to prove it! - an impossibility, unless we devise some
non-obvious extension of the bootstrapping method.

www.manaraa.com

PROVING CORRECI'NESS OF EXECUTABLE PROGRAMS 339

ill-defined?
On a more optimistic note, there is one verified compiler from a simplified

Pascal-like language to a realistic but fictitious machine-code - see Polak 81. So
the "proven compiler" possibility seems worth trying for, despite the impediments.

If we accept that a proven translator is not currently viable, what can we do?
The answer will be conditioned by the difficulties imposed by the machine code,
so they are dealt with in the following sub-sections, before we turn to proposed
solutions.

5.1. "DIFFICULT" FEATURES OF CPU INSTRUCTION SETS

At a superficial level, we can define the effect of an instruction in tenns of "machine
description language" (e.g., see Barbacci et al77, 78, Joyneret al. 77). For example,
Motorola 68000 instructions of the assembler fonn:

ADD.W #n,Dr

to add a constant value n to a 16-bit ("Word") value in a data-register Dr could be
defined by:

n + Dr -> Dr

but that's only a sketch:
the 68oo0's D-registers are 32-bit, and the ". WIt means that the least significant
16 bits of Dr will be used: what affect will the instruction have on the top bits
of Dr? For example, if we are dealing with unsigned integers, will there be
carry from the low half of Dr into the high half? or if we are working with
signed integers, is n sign-extended?37 If it is sign-extended, how do we say
that in a usable fonnal notation?
the 68000 has a number of condition-code registers which will be set, cleared,
or left unchanged depending on the instruction and its result. For the ADD
instruction, all are "changed according to the result of the addition": the
Z condition-code register is set if the result is zero, the N condition-code
register if the result is negative, the C condition-code register if there should
be carry-out (into what? - see the last bullet item and the next paragraph), the
V condition-code register if there is overflow (from what? the low 16 bits, or
the full 32?) These effects can all be fonnally described in tenns of the result,
but the resulting description is large, complex, and generally unwieldy to work
with. Motorola's manual tries to give a full semi-fonnalized description of
the effects, but if one tries to write them in fully-fonnal notation a few subtle
gaps show up.

One could describe condition codes in general as working by "side-effect": pro
cedures with side-effects in high-level-language programs cause trouble both for
infonnal and fonnal program development, so it's not surprising that side-effects

37 Or would the effect of adding a negative n be achieved only by the SUB.W instruction?

www.manaraa.com

340 K.LESTER

of machine code instructions also cause trouble. In particular, if the program de
pends on "long" integer arithmetic, "carry" condition-codes cause special problems
because their values get fed back into the data, whereas other condition-codes are
usually used by "test and conditional branch" instructions, which don't (directly)
mix the value of the condition-code with other multi-bit data, and so are "simpler"
in a local sense.

Memory reference can also be hard to describe. For example, on the 68000, the
memory reference in the instruction

ADD.W -(An),Dr

adds into Dr the value in that memory location whose address was in the An
address register, after having decremented the address in An.38 The indirection
in this memory reference is rather fiddly to formalize, but the "autodecrement"
side-effect is hard to describe, and involves particularly sensitive assertions to be
generated and checked for the program under verification.

Where the options to use the bottom 16 or bottom 8 bits of a 32-bit 68000
register is problematic, the corresponding options on the Intel 8086 are worse. On
the 8086, the AX register is 16 bits: the top half of AX can be accessed as "the AH
register", and the bottom half as "the AL register". Likewise, the other two main
registers, BX and CX, can be split into BH-and-BL, CH-and-CL. The aliasing in
this is very difficult to formalize in a way that is easy to use. Compilers also have
trouble with this, and often deal with it by crippling their register allocation - e.g.
(1) not using any of AH, BH, CH, or (2) alternatively using AL and AH but not
AX, using BX and CX but not BL, BH, CL, or CH. This is complicated by the
8086 having instructions which use AX, BX, and CX differently - for example
the REP instructions make special uses of CX and of its halves.39

On almost all architectures various policies considered prudent when writing
assembler by hand become even more important: e.g. strict separation of code
and fixed data on the one hand from variable data on the otherW, and even strict
separation of different classes of variable data become more important.

To a certain extent can reduce these problems by using only a subset of the
CPU's facilities, the subset being chosen (where possible) to avoid "difficult"
features. Unfortunately, nearly every CPU architecture has almost-unavoidable

38 This form of address operand is useful for working through an array, element at a time; also for
stack operation. One aspect that makes a formal description longer is that the increment or decrement
is by the number of bytes in the operand (i.e. 2 or 4), rather than by a fixed value.

39 And this is only part of the "clever" register architecture of the 8086. By contrast, the 68000
has a simpler and more generous register architecture, with 8 "D" registers, 8 "A" registers, and
only one register having special properties (A 7, which is presumed to be the stack register by the
CALL and RETurn instructions). This exemplifies the wild variation between CPUs in "simplicity"
versus "cleverness". (From this point of view of "niceness" or "regUlarity" of the instruction set,
most RISC architectures are a mixture of "very nice" and "very nasty", when compared to orthodox
architectures.)

40 The "self-modifying code" which was normal practice on early machines - which manifested
itself in COBOL as the "ALTER GOTO" verb - would cause terrible difficulties for verification. On
the other hand, compiler writers often decide to generate code with very murky characteristics.

www.manaraa.com

PROVING CORRECfNESS OF EXECUTABLE PROGRAMS 341

"difficult" features: for example, avoiding "autoincrement" and "autodecrement"
memory references on the 68000 will only complicate the program in other ways
(but other "clever" forms of 68000 memory reference are more easily avoidable).
On almost all machines, interrupt-handling is "very difficult" to formalize (both its
asynchronous nature, and the interrupt-priority regime), and usually impossible to
avoid in real programs.

"Subsetting" the CPU also has the problem that we then either have to hand
write the desired program in assembly language, or have a special compiler which
only generates machine code within the subset: both options are expensive, in
different ways.

In short, "clever" CPU features designed to help a human writer of assembly
language programs become a nuisance for compiler-writers, and an extreme nui
sance for formalization. For formalization, the ideal would be a target-machine
instruction set that is simple, and which has a modest-sized formal definition.

5.2. "DIFFICULT" FEATURES OF ASSEMBLY LANGUAGES

Hand-written machine-code programs are usually notated in a textual form called
"assembly language", rather than directly in binary. When there is need to verify
machine code, the verification is often done at assembler level, because the binary
cannot reliably be read by humans, and lacks essential information for human or
software to use (see next subsection).

The "assembly-language" text is translated to binary by an "assembler" program.
Just as we had the problem of "trustworthy" compilers, so we have the problem of
trustworthy assemblers.

In cases where one line of assembly-language text is translated to one machine
code instruction, the assembler is simple, and we have the possibility of verify
ing it (or rigorously designing it) fairly straightforwardly, barring the difficulties
discussed in the last sub-section. So if assembly-level language is to be used as a
stepping-stone in the development of a verified program we will tend to prefer a
minimal-but-adequate assembly language and assembler.

Most assemblers support language features that are not simple, as aides to
human writers of assembly-language programs: for example, such features often
include macro-generation, conditional compilation, and means to provide multiple
names ("aliases") for data locations - all traditionally heavily used by assembly
language programmers, and all complex. The corresponding assembler would be
hard to verify, so if such a language were to be used for a program to be verified, it
would probably be better to separate the assembler into two: a prepass into "simple"
assembly-language, which would then be verified, then a simple assembler for
translation into binary. Suitable software wouldn't be particularly expensive to
write, but is seldom available.

One might hope that a back-translation strategy could verify the translation of a
particular program: that is, the program could be translated from assembly language

www.manaraa.com

342 K.LESTER

to binary, and then "disassembled" back into source which would be compared
with the original assembly source, supposedly verifying the binary version on the
argument that if the original source version was correct but the binary version was
incorrect, then the back-translated source would be incorrect and therefore different
from the original. This has obvious fallacy that if the assembler and disassembler
programs were written with the same misunderstanding then the assembler would
translate wrongly, and the back -translation from the disassembler would repair the
error. Despite the fallacy, this is a square wheel that has been re-invented a number
oftimes.41

5.3. THE LACK OF INFORMATION IN ASSEMBLER AND MACHINE CODE

The compilation process discards a lot of information that was present or latent
in the high-level language source: for example, given some inter-related branch
instructions in the translated code, so they reflect some meaningful part of the
source control flow, or were they due to an optimization of an "if' test of a complex
condition?

This makes it more difficult to prove a low-level version of a program than the
high-level source version, even without the difficulties of section 5.1. Additional
information would therefore be helpful.

As already noted, within the two forms of low-level code, machine code has
had even more information discarded than assembly-level code. But this time, we
could hope to carry assertions and proof forward from a one-instruction-per-line
assembly language to binary, and use them to audit the binary version.

5.4. COMPll..E, WITH PROOF

An obvious tactic is then to carry forward the formal design or proof of the
high-level language version of a program. Instead of permitting information to be
discarded by the compilation process, the compiler would preserve any desirable
information from source level, perhaps as additional assertions: for example

initialization of variables (made more difficult in assembler by loss of "scope"
information);
that values of a certain variable should be in a range associated with its type
or subtype (made difficult by loss of information on the type or subtype);
ensuring the run-time program won't try to "follow down" any "nil" pointer
values (made difficult by loss of "type" information - in this case of infor
mation about "pointer" types);

41 There is an extra problem that the process of assembly discards information - e.g. the layout of
the input, what name (if any) was associated with a particular address, etc.: so the comparison would
need to be tolerant of the resulting discrepancy. The various reinventions have included a variety of
dubious patches to supposedly overcome this problem.

www.manaraa.com

PROVING CORRECTNESS OF EXECUTABLE PROGRAMS 343

array indexes being in bounds (made more difficult in assembler by loss of
explicit information on the bounds - so its really the bounds that would
survive as additional assertions);
which branch instructions reflect what kinds of source-level flow-of-control
constructs;

and soon.
Compilation can even help, because many of the analyses done during com

pilation (especially for optimization - see Carre 89b) yield information which
is useful or needed for the proof. Also, there is the possibility that if the proof
couldn't be completed at source level because some assertion doesn't follow from
the source (e.g. that a certain variable will be able to hold values in a certain range),
the compiler could translate in such a way that the assertion will be true for the
translated code (e.g. that the variable be chosen to be of a size adequate to hold the
values of the desired range).

Unfortunately, even modest optimizations will re-order code, merge code,
change the organization of the data, and so on: and all of those will have the
effect that source assertions will have no-where to go, and new assertions will be
needed: as a result the carried-forward proof will at least need partial re-proving.
The alternative is to go to painful lengths to not optimize at all: which is exactly
what many safety-critical projects have done.

Even then, most compilers need to generate low-level code which take advantage
of CPU-specific "tricks", making the output unavoidably hard to verify.

Unfortunately, this "compile, carrying forward the proof' approach has been
talked about more than done. The main reason for this seems to be that it requires
much-modified compilers, and that no-one has seen fit to fund such an expensive
and risky venture.

5.5. DIRECTLY PROVE LOW-LEVEL CODE

This has been done, both for formally-developed code refined all the way to
assembler level and also for hand-written code.

The SPADE project provides two well-documented examples. The essential
method of each was that machine-code subsets (avoiding the "hardest" features of
the CPUs) are translated by a program written in Prolog to FDL (the modelling
language of the SPADE proof checker) together with manually-supplied assertions.
Clutterbuck et al., 88, used this method for a subset of the 8080 processor: O'Neill
et al., 88, used it for a modularized assembler language for the A8002 processor42.
A new assembler-to-FDL translator is needed for each new assembly language, but
thereafter fairly standard tools are used.

One might worry about the correctness of the translators to FDL, being manually
written and hard to verify: somewhat less about the more-used SPADE proof

42 The A8002 application was control of the Rolls-Royce R-ll1 "524 series" engines now in use
in Boeing 747 and 767 and other airliners: the 8080 project was not for a specific application.

www.manaraa.com

344 K.LESTER

checker. However, if either of these had an error, it is extremely probably that
the result would be that a proof wouldn't be found for a correct program: that is,
such errors are almost certainly fail-safe. Although such errors were apparently a
problem, the greatest problem was the substantial amount of effort that was needed
to develop the very large number of highly-detailed assertions that were needed:
this because low-level versions of programs are longer and more detailed than the
corresponding high-level versions.

5.6. TRANSLATE TO INTERMEDIATE LEVEL, PROVE, PROVEN TRANSLATION

>From all the above, it seems that there could be hybrid solutions to the problem
of converting verified high-level programs into verified low-level equivalents. In
particular, there is the possibility that can identify some intermediate level, such
that it is still sufficiently high-level that the proof for formal design can be carried
forward to it relatively easily, but sufficiently low-level that a verified translator
from it is a realistic proposition.43

There appear to have been two proposals of this sort in recent years. Wichmann,
89, proposes a 'Low Ada' language - essentially a simplified subset of Ada, to
which verified full Ada could be transformed. To a large extent the high-level
features which survive in "low Ada" are (1) the control constructs (which we have
already observed would need to be preserved in some form, to facilitate the low
level proving) and (2) much-simplified assignments (it being presumed that all the
checking normally done in full Ada assignments would be done explicitly in Low
Ada). So Low Ada attempts to stay as provable as possible, but is still rather far
from machine code. Lester et al., 91, makes establishing a desirable level of the
intermediate language something to be determined, but tends to presume something
like the intermediate languages commonly used in multi-targeted compilers, i.e. a
somewhat lower level than Low-Ada. Compiler-like intermediate languages have
the advantage of there being a substantial literature on algorithmic methods of
translating them to machine-level (Cattell 78, Cattell et al. 79, Cattell 80, Fraser
77, Glanville 77a, Glanville 77b, Graham et al. 78, Lester 82, Wasilew 72). If
one has confidence in the algorithm of one of these methods, the correctness of
a translation using the method depends only on the machine description given to
the method. A weakness of these algorithmic methods is that they generally will
choose a correct set of machine instructions, and most place them into a correct

43 This may not be possible: "easily proven" might imply a higher level than we can verifiably
translate from, given current verification methods. Although the possible problem in this case is a
gap in the levels, it may be that we can gain intuition from a related problem of an overlap of levels:
in the early days of compiling technology, there was an attempt to find a language low enough to
be a common target for a variety of high-level languages and a common source for a variety of
machine-codes (Conway 58, Strong 58, Steele 61) but even with the limited variety of high-level
languages and machines at that time the "highest common denominator" of the languages proved
lower than the "lowest common multiple" of the machines (Steele 63: 'UNCOL' stood for 'UNiversal
Computer-Oriented Language). There are many lessons to be learned from the "UNCOL experience".

www.manaraa.com

PROVING CORREcrNESS OF EXECUTABLE PROGRAMS 345

order, but all are very weak on register-allocation aspects of the translation to
machine-code. For example, Leverett 91 discusses register-allocation in the same
"Compiler-compiler" system as Cattell, with the two parts of that system apparently
being very separate: Lester's method can treat separate registers as distinct machine
code entities, and so can produce locally-best code at the cost of a search which
takes time exponential in the number of registers. As it stands, the algorithmic
methods can therefore either produce poor-but-correct machine code, or will need
extension to deal with register allocation. It seems likely that different register
architectures (e.g. the 68000's twb banks of registers versus the 8086's no-two
alike registers) will involve quite different extensions to the underlying algorithms,
thereby weakening confidence in the extended algorithm (because it starts to be
complex, and a particular extension will be less-used and so less-scrutinized) and
in the code implementing it.

6. Conclusion

The first time a programmer attempts a "rigorous" verification of any program code,
he is likely astonished by two things: (1) the precision needed; (2) the sloppiness
of the intuitive logic which had been used in writing the program (and which
previously was probably thought impeccable). Intuitive program construction is
just not adequate for important programs - we make too many implicit and
unjustified assumptions (see also Harel 80).

If we "prove" or "formally develop" a program or program component, we gain
a level of confidence in it that is unavailable with intuition backed with testing,
but it is crucial to prove the software all the way to the executable machine code
version. Software such as RAISE and SPARK/SPADE for facilitating the proofs is
becoming available.

And then we'll systematically test the program anyway - but not nearly as
expensively as in our traditional "extreme experimental" manner.44

We should not be surprised or disturbed by the need for a mixture of proof
tactics - corresponding sorts of mixture (perhaps different mixtures from project to
project) are common in other Engineering disciplines. The opportunity to Engineer
programs is there. All we need is the common sense and courage to make the
investment needed to drag ourselves out of the 1960's.

Acknowledgements

The topic of this paper is vast, having been the subject of much work (albeit
scattered) over the last thirty years: consequently, it has not been possible to
cover the whole issue in only a single tutorial paper. This required that reportage

44 Consider the differences between how a Civil Engineer will test a bridge that was rigorously
designed, versus a bridge that was "designed" only by intuition ... Systematic test of an intuition
defined entity is a much larger and guess-based task than testing a rigorously-designed entity.

www.manaraa.com

346 K.LESTER

be arbitrarily selective and unduly abbreviated (especially in the references): so I
would like to give a general acknowledgement to the many whose work I otherwise
be acknowledging in detail.

However, I would like to make particular acknowledgements to Peisong Huang
and Dr Brian Wichmann for valuable discussions on the topic of the correctness of
executable programs and how to achieve it, and to Mike Woodger for having, over
the years, opened my eyes to the inadequacies in how we often do things. I must
also thank Mike for identifying the Turing quotation.

References

Ambler A.L., Good D.I., Browne J., Burger W.F., Cohen R.M., Hoch R.M. and Wells R.E., 1977:
'Gypsy: a language for specification and implementation of verifiable programs', in SIGPLAN
notices 12:3 (Proceedings, ACM conference on language design for reliable software), pp 1-10.

Barbacci M.R., Barnes G., Cattell R.G.G., and Siewiorek D., 1977: 'ISPS reference manual',
Carnegie-Mellon University report CMU-CS-TR-79-137.

Barbacci M.R. and Parker A., 1978: 'Using emulation to verify formal architecture descriptions',
IEEE "Computer" magazine, May 1978, pp. 51-56.

Carre B.A., 1989a: 'Reliable programming in Standard Languages', chapter 5 of Sennet C. (ed.),
High Integrity Software, Pitman, London.

Carre B.A., 1989b: 'Program analysis and verification', chapter 8 of Sennet C. (ed.), High Integrity
Software, Pitman, London.

Carre B.A. and Garnsworthy J., 1990: 'SPARK - An Annotated Ada Subset for Safety-Critical
Programming', in Tri-Ada '90 Proceedings, ACM Press, New York, pp. 392-402.

Cattell R.G.G., 1978: 'Formalization and automatic derivation of code generators', Carnegie-Mellon
Univerity report CMU-CS-TR-78-115 and AD-A058-872/3WC.

Cattell R.G.G., Newcomer I.M., and Leverett B.W., 1979: 'Code-Generation in a machine
independent compiler', SIGPLAN notices (Proceedings, Symposium on Compiler Construction)
14:8 pp. 65-75.

Cattell R.G.G., 1980: Automatic Derivation of Code Generators from Machine Descriptions', ACM
Transactions on Programming Languages 2:2, pp.173-190.

Clutterbuck D.L., and Carre B.A., 1988: 'The verification oflow-Ievel code', in Software Engineering
Journal, May 1988.

Conway M.E., 1958: 'Proposal for an UNCOL', Communications of the ACM, 1: 10 pp. 5-8.
Currie I.F., 1986: 'NewSpeak - an unexceptional language', Software Engineering Journal 1, pp

170-176.
Dandanell B., and George V., 1991: 'The LaCoS Project', Computer Resources International AlS,

Birkerod, Denmark.
De Millo R.A., Lipton R.J. and Perlis A.J.: 1979, 'Social Processes and Proofs of Theorems and

Programs', CACM 22(5), pp. 271-280. See also the resulting letters, CACM 22(11) pp. 621-630
and CACM 23(5) pp. 307-308, especially the refutations by Lamport, Maurer and Leverett.

Eriksen K.E., and Prehn S., 1991: 'RAISE Overview', Computer Resources International AlS,
Birkerod, Denmark.

Floyd R.W., 1967: 'Assigning Meanings to Programs', in Mathematical Aspects of Computer Science,
Proceedings of Symposia in Applied Mathematics, ed. I.T. Schwartz, American Mathematical
Society, Providence R.I. pp 19-32.

Fraser C.W., 1977: 'Automatic Generation of Code Generators', Yale University Department of
Computer Science.

George C. (ed.), 1991: 'The RAISE Specification Language', Computer Resources International AlS,
Birkerod, Denmark.

Glanville R.S., 1977a: 'A new method for Compiler Code Generation', Univerity of California at
Berkeley Department of Computer Science.

www.manaraa.com

PROVING CORRECTNESS OF EXECUTABLE PROGRAMS 347

Glanville R.S., 1977b: 'A Machine-Independent Algorithm for Code Generation and its Use in
Retargetable Compilers', Univerity of California at Berkeley Department of Computer Science.

Graham, S., and Glanville R.S., 1978: 'A new method for Compiler Code Generation', Proceedings
of the 5th ACM Symposium on the Principles of Programming Languages, pp. 231-240 (this is
a review of Glanville 77 a).

Habermann A.N., 1973: 'Critical comments on the programming language Pascal', Acta Informatica
3, pp. 47-57.

Harel D., 1980: 'On Folk Theorems', CACM 23(7), pp. 379-389; also Denning's follow-up, CACM
23(9), pp.493-494.

Hird G.R., 1990: 'Towards Reuse of Verified Ada Software', in Tri-Ada '90 Proceedings, ACM Press,
New York, pp. 14-21.

Holzapfel R. and Winterstein G., 1988: 'Ada in Safety Critical Applications', in Proceedings of the
Ada-Europe Conference, Munich, published by Cambridge University Press.

Ichbiah J.D. et al., 1979: 'Reference Manual for the Programming Language Ada' ,SIGPLAN Notices
14:6 (June 1979), Part A.

Joyner, Carter, and Brand, 1977: 'Using machine descriptions in program verification', llM research
report RC 6922.

Jones C.B., 1986: 'Systematic Software Development using VDM', Prentice-Hall.
Krieg-Brueckner B. and Luckham D.C., 1980: 'ANNA: towards a language for Annotating Ada

Programs', SIGPLAN notices 15:11 (Nov 1980) pp. 128-138.
Lampson B.W., Homing J.J., London R.L., Mitchell J.G. and Popek G.L., 1977: 'Report on the

programming language EUCLID', SIGPLAN notices 12:2.
Lees R.A., 1990: 'A Tailored Design Language: Putting Model Based Formal Specification into

Practice', in Tri-Ada'90 Proceedings, ACM Press, New York, pp. 22-31.
Lester C., 1982: 'Some tools for automating the production of compilers and other translators',

Imperial College Department of Computer Science, University of London.
Lester C. and Huang P., 1991: 'A fresh approach to program proving (from Ada to machine code)',

Portsmouth Polytechnic School of Information report TR-91/3.
Leverett B.w., 1981: 'Register Allocation in Optimizing Compilers', Carnegie-Mellon University

report CMU-CS-81-103.
London R.L., Guttag J.V., Homing J.J., Lampson B.W., Mitchell J.G. and Popek G.L., 1978: 'Proof

rules for the programming language EUCLID', Acta Informatica 10:1, pp 1-26.
Luckham D.C., von Henke EW., Krieg-Brueckner B., and Owe 0., 1987: 'ANNA - a language for

Annotating Ada Programs', Lecture Notes in Computer Science 260, Springer-Verlag.
McMorran MA. and Nicholls J .E., 1989: 'z User Manual', llM United Kingdom Laboratories report

TRI2.274.
Meyer B., 1992: 'EIFFEL: the language', Prentice-Hall.
M.o.D., 1991a: Interim Defence Standard 00-55, 'The Procurement of Safety Critical Software in

Defence Equipment', (British) Ministry of Defence, April 1991.
M.o.D., 1991b: Interim Defence Standard 00-56, 'Hazard Analysis and Safety Classification of the

Computer and Programmable Electronic System Elements of Defence Equipment', (British)
Ministry of Defence, April 1991.

Mukherjee P. and Stavridou v., 1991: 'The formal Specification of Safety Requirements for the Storage
of Explosives', report DITC 185/91, National Physical Laboratory, Teddington, England.

O'Neill LM., Clutterbuck P.L., Farrow P.E, Summers P.G. and Dolman W.C., 1988: 'The Formal
Verification of Safety-Critical Assembly Code' in Safety of Critical Control Systems (Proceedings
ofIFAC-SafeComp 88), pp. 115-120.

Peters J. and Hankley w., 1990: 'Proving Specification ofTasking Systems Using Ada/l'L', in Tri-Ada
'90 Proceedings, ACM Press, New York, pp. 4-13.

Polak W., 1981: 'Compiler Specification and Verification', Lecture Notes in Computer Science 124,
Springer-Verlag.

Race J., 1990: 'Computer-encouraged pilot error', in Computer Bulletin, Aug 1990, pp 13-15.
Steele T.B., 1961: 'A first version of UN COL' , Proceedings of the Western Joint Computer Conference

19: pp. 371-378.
Steele T.B., 1963: 'UNCOL - the myth and the fact', Annual Review of Automatic Programming

www.manaraa.com

348 K.LESTER

2, pp. 325-344.
Strong G., 1958: 'The problem of program communication with changing machines: a proposed

solution', Communications of the A.C.M. 1:8 pp. 12-18 and 1:9 pp. 9-15.
Turing, A., 1949: 'Checking a large routine' , talk to the Inaugural Conference of EDSAC, proceedings

published by the Mathematical Laboratory, Cambridge University, 1950. There is also evidence
that Turing and others considered these issues at Princeton University in the 1930's.

Wasilew, 1972: 'A compiler writing system with optimisation capabilities for complex order struc
tures', North-Western University and DAI 72-32604.

Weyl R., 1923: "Raum, Zeit, Materie", Berlin.
Wichmann B.A., 1989: 'Low-Ada: an Ada Validation Tool', Report DITC-144/89, National Physical

Laboratory, Teddington, England.

APPENDIX: SPECIFICATION AND PROOF OF TWO PROCEDURES

The appendix gives specifications and proofs for two simple procedures in Ada,
using a simplified ANNA-like notation. "Simple" turns out to be not-so-simple ...

First: A SPECIFICATION of pre- and post-conditions for what the Ada
Standard rather completely calls a 'procedure specification':

procedure SWAP(A,B:in out ELEMENT);
--lout A in B
--I and B = in A

Text after - - I is assertion: Ada comments start with "- -" and continue to
the end of the line, so the assertions would be ignored if the above and following
texts were input to an Ada processor (as opposed to an ANNA-like processor). In
the following, Ada-style comments are used inside assertions to comment on the
assertions. For a specification, assertions preceded by "in" are preconditions, i.e.
should be true before any call of the procedure; and assertions proceeded by "out"
are postconditions, i.e. will be true for a given procedure call if the preconditions
are met for that call and if the body of the procedure is correct. This procedure
has a null precondition - that is, it can be called anywhere with no precondition
needing to be met (There is, however, the implicit precondition that any data or
variables going "in" to a procedure will have been initialized.)

Now for an Ada body for that Ada specification, with a "proor' of the
correctness of the body:

procedure SWAP(A,B:in out ELEMENT) is
--I {A = in A. B = in B}

OLD_A: constant ELEMENT := A;
--I OLD_A = in A
--I {A = in A. B in B, OLD_A = in A}

begin
--I {A = in A, B in B. OLD_A = in A}

A := B;
-- 1 { A = prior B }

-- deduce { A = in B } (because (prior B = in B}),
-- so a summary of what we know here is now:

--I {A = in A, B = in B, OLD_A = in A} - {prior A=in A}
--I U {A=in B}

www.manaraa.com

PROVING CORRECTNESS OF EXECUTABLE PROGRAMS 349

-- i. e.
__ I {B = in B, OLD_A = in A, A = in B}

B : = OLD_A;
-- 1 { B = prior OLD_A } .

__ deduce {B = in A}. summary "here" lS:
__ I {B = in B, OLD_A = in A, A = in B} - {prior B=in B}
__ I U {B=OLD_A,B=ln A}

-- i.e.
__ I {OLD_A = in A, A = in B, B = OLD_A, B = in A}

end SWAP; -- "forgets" any facts involving locals
__ I {OLD_A = in A, A = in B, B = OLD_A, B = in A} - {OLD_A}

-- i.e.
-- 1 {A = in B, B = in A} Q.E.D.

Clearly, the sets of facts we will need to carry round in the text can get very
big, so if we carry on with a notation like that it will become unreadable: and that
defeats the whole purpose of notation ("to provide means to express some class of
concepts concisely").

Perhaps the need is really for program tools to lessen that problem. For example,
if we only write" stepping stones" - the things to deducefrom (on entry), to deduce
to (on exit) and the "deductions" (along the way) then we might input

procedure SWAP(A,B:in out ELEMENT) is
--.I {A = in A, B = in B}

OLD_A: constant ELEMENT .- A;
--I OLD_A = in A

begin
A := B;

--I {A in B
B := OLD_A;

--I {B in A
end SWAP;

--I {A = in B, B = in A} -- Q.E.D.

to have the tool output the along-the-way summaries

procedure SWAP(A,B:in out ELEMENT) is
--I {A = in A, B = in B}

OLD_A: constant ELEMENT := A;
--I {A in A, B in B, OLD_A in A}

begin
--I (A in A, B = in B, OLD_A in A}

A .- B;
--I {B in B, OLD_A in A, A in B}

B := OLD_A;
--I {OLD_A in A, A in B, B = OLD_A, B = in A}

end SWAP;
--I {A = in B, B = in A} -- Q.E.D.

or even maybe just output "Q.E.D.".

www.manaraa.com

350 K.LESTER

Alternatively, we could number or letter the places that assertions are needed,
and then present the assertions separately. Being able to identify a particular as
sertion also makes it easy to provide an audit trail of what another assertion was
deduced from: the second example does that.

Many assertions would be very long if written in full. So we "factor out"
fragments that would repeatedly appear in different assertions. This also has the
advantage that we can name the factored-out fragments, so that both the statement
of the fragment and of its uses become more understandable. In ANN A this is done
as "virtual text", preceded by "- - : ". The virtual text is also written in Ada-like
code, as if it were to be executed as part of execution of an assertion which should
return TRUE at runtime.

Some virtual text, with an Ada declaration which the virtual text depends
on:

type ARR is array (INDEX) of ELEMENT;
-- the specification AND the virtual text will
-- operate on this ..

function ASCENDING (Y:ARR) return BOOLEAN is
begin

return (for all I,J in Y'RANGE, I<J implies Y(I)<Y(J));
end ASCENDING;

function UNIQUE (Y:ARR) return BOOLEAN is
begin

return (for all I,J in Y'RANGE, Y(I)=Y(J) implies I=J);
end UNIQUE;

function IS PERM(Y,Z:ARR) return BOOLEAN is -- this should only
begin - -- be used where the

return (for all I in Y'RANGE, -- ranges of Y and Z
exists J in Y'RANGE => Y(I)=Z(J)); -- are the same.

Ideally, there would be some way of telling the tools that the following "invari
ants" should all be TRUE, at all times:

Y.1: IS_PERM(X,X) for any initialized array X or type ARR
Y.2: UNIQUE(Y) and IS_PERM(Y,Z) implies UNIQUE(Z)
Y.3: ASCENDING(X(I,I» -- a one-element "slice" of X is "ascending"
Y.4: ASCENDING(X(I,I-l» -- a null slice is (vacuously) ascending
Y.S: P(A,B) followed by SWAP(A,B) implies P(B,A) for any proposition P

Ideally the tools should check the correctness of these "invariants" from the
virtual code and the postconditions of SWAP, and should complain if IS_PERM is
misused (i.e. in a context where its parameters are not provably of the same length).

Now for the SPECIFICATION of pre- and post-conditions for the second
Ada 'procedure specification':

www.manaraa.com

PROVING CORRECTNESS OF EXECUTABLE PROGRAMS

procedure SORT (X:in out ARR)i
--I in UNIQUE (X)
--lout UNIQUE(X) and IS_PERM(in X,X) and ASCENDING(X)

351

The "in x" in the postcondition means "the (composite) value of X when the
procedure was entered", so IS_PERM (in x, Xl means that the values of the
elements after SORT are a pennutation of the elements before.

Now for the same Ada body for that Ada specification, with a "proor' of
the correctness of the body:

procedure SORT (X:in out ARR) is
begin

{A.i}
for I in INDEX'FIRST + 1 .. INDEX'LAST loop

{B. i}
for J in reverse INDEX'FIRST+l .. I loop

--I {C.i}
if X(J) < X (J-l)
then

--I {D.i}
SWAP (X(J),X(J-l));
--I {E.i}

else
--I (F.i)
null;
--I (F.i)

end if;
--I (G.i)

end loop;
--I (H.i)

end loop;
--I (Li)

(still)

end SORT;

It seems to be a matter of taste
whether this text becomes "more
readable' if the assertions are
placed on the ends of the prior
lines, making the text "short and
fat" instead of "long and thin".

{A. i}:
A.l:
A.2:
A.3 :

{B. i}:
B.l:
B.2:
B.3:
B.4:

{c. i} :

C.l:
C.2 :
C.3:
c.4:
C.S:
C.6:

UNIQUE(in G) -- precondition
IS_PERM(in X,in X) -- invariant Y.l
ASCENDING(X(X'FIRST .. X'FIRST-l)) -- invariant Y.4

I in X'FIRST+l .. X'LAST
UNIQUE (X)

the 'for" range
A.l and H.2
A.2 and H.3 IS_PERM(X,in X)

ASCENDING(X(X'FIRST .. I-l)) A.3 and "for" iteration from H.4

J in X'FIRST+l .. I
I in X'FIRST+l .. X'LAST
UNIQUE (X)
IS_PERM (X, in X)
ASCENDING(X(X'FIRST .. J-l))
ASCENDING(X(J+l .. I))

the
B.l
B.2
B.3
B.4
Y.4

Mfor- range

and G.3
and G.4
and 'for" iteration from G.S
and Ilfor· iteration from G.7

www.manaraa.com

352

C.7: X(J-l) < X(J+l)

C.8: X(J) < X(J+l)

K.LESTER

vacuous on first iteration, and
"for" iteration from G.6
vacuous on first iteration, and
"for" iteration from G.8

{D.i} = {c.i} U the if-condition
D.l..8 = C.l..8
D.9: X(J) < X(J-l) the if-condition

{D.i} then SWAP (X(J),X(J-1» {E.i} =
E.1: J in X'FIRST+1 .. I = C.1, D.1
E.2: I in X'FIRST+1 .. X'LAST = C.2, D.2
E.3: UNIQUE (X) from C.3=D.3 and SWAP
E.4: IS_PERM (X, in X) from C. 4=D. 4 and SWAP
E.5: ASCENDING(X(X'FIRST .. J-2» from C.5=D.5 less damage by SWAP
E.6: X(J-2) < X(J) [=old X(J-1)] from C.5=D.5 and SWAP
E.7: ASCENDING(X(J+l .. I» from C.6=D.6
E.8: X(J) [=old X(J-1)] < X(J+1) from C.7=D.7 and SWAP
E.9: X(J-l) [=old X(J)] < X(J+1) from C.8=D.S and SWAP
E.10: X(J-1) [=old X(J)] < X(J) [=old X(J-l)]

-- from D.9 and SWAP

{F.i} = {c.i} U the inverse of the if-condition
F.l..8 = C.l..8
F.9: not (X(J) < X(J-l) }
F.10: X(J) >= X(J-l)
F.ll: X{J-l) < X(J)
F.l2: ASCENDING(X(X'FIRST .. J»

{G.i} = {E.i} intersection {F.i}
G.1..4 = A.1..4
G.5: ASCENDING(X(X'FIRST .. J-2»
G.6: X(J-2) < X(J)
G.7: ASCENDING(X(J .. I»

G.8: X(J-l) < X(J)

inverse of the if-condition
more tractable form of F.9?
from F.3 and F.lO
from F.5 and F.ll: also subsumes
F.5 and F.ll

see (*) below
Identical in {E.i} and {F.i}
=E.5, and implied by F.5=C.5
=E.6, also implied by F.l2
implied by E.7 together with E.8,
also by F.6 together with F.S
=E.lO, also implied by F.12

(*) It's not the sets of assertions that the intersection applies to, but the sets of
theorems they generate! - see the main paper. By contrast, the union of sets of
assertions is a set of assertions defining the set of theorems which is the union of
the two sets of assertions for the original sets:

THEOREMS({Xi }) U THEOREMS({Yi}) = THEOREMS({Xi } U {Ii})

{H.i} = {G.i} the last time round the J-loop, i.e. with J replaced
by (X'FIRST+l)

C.l G.l, carried forward, becomes irrelevant (since J no longer exists)
H.l B.l G.2
H.2 B.2 G.3
H.3 B.3 G.4

www.manaraa.com

PROVING CORRECTNESS OF EXECUTABLE PROGRAMS

H.4: ASCENDING(X(X'FIRST+l .. I» -- replacement in G.7
H.5: X(X'FIRST+l-l) [i.e. X(X'FIRST) < X(X'FIRST+l)

replacement in G.a

353

H.6: ASCENDING(X(X'FIRST .. I» implied by H.4 and H.5, which
-- it subsumes

After the replacement, G.5 becomes ASCENDING (X (X I FIRST .. X I FIRST-l)) ,
and G.6 becomes X (X I FIRST+1-2) < X (X I FIRST+l), both of which are
vacuous, and so can be struck out at this point in the program (and introduced
anywhere it is needed!)

(I.i) = {H.i} the last time around, i.e. with I replaced by X'LAST
H.l becomes irrelevant
1.1: UNIQUE{in G)
1.2: IS_PERM(X,in X)
1.3: ASCENDING(X(X'FIRST .. X'LAST»
1.4: ASCENDING (X)

H.2 = A.l
H.3, derived from A.2
replacement in H.6
1.3, and the Ada definitions of
slices, 'FIRST, and 'LAST

The postconditions are just J.1, J.2, and J.3, so the procedure body is proven.
Note that throughout the proof, most of the deductions are either trivial or

small-but-tricky: few are of middling difficulty.
That formulation of the pre- and post-conditions depended on the array to be

sorted being "unique": that is, with no value in two positions (before, and therefore
after). To allow duplicate values in the array, we would need to define IS_PERM
differently, with anew function in virtual text used only in IS_PERM:

function COUNT (E:ELEMENT) return INTEGER is
TO_DATE: INTEGER :=0;

begin
for I in INDEX loop

if X(I) = E
then TO_DATE := TO_DATE + 1;
end if;

end loop;
return TO_DATE;

end COUNT;

function IS_PERM(Y,Z:ARR) return BOOLEAN is
begin

return (I in INDEX implies (COUNT(X(I» = COUNT(in X(I» »;
end IS_PERM;

The UNIQUE function is no longer needed, and the precondition becomes null:

procedure SORT (X:in out ARR)i
--lout IS_PERM(in X,X) and ASCENDING(X)

(There's a "scoping" issue there for the extended language and for the tools:
COUNT directly uses the parameter "X" of SORT, and so should be "in the scope"
of the parameter. That means some special ANNA rules on the placing of the
definition of COUNT, and hence of IS_PERM.)

www.manaraa.com

Direct Manipulation as a Basis for Constructing Graphical User Interfaces

Coupled to Application Functions

JAN VAN DEN BOS

Department of Computer Science
Erasmus University Rotterdam

The Netherlands
E-mail: jvdb@cs.eur.nl

Abstract. Given a collection of application functions, a system is discussed that allows designers to
construct the three parts of a graphical man-computer interface, t.w.layout (including presentation and
graphical constraints), dynamic aspects (behavior or dialogue), and coupling to application functions,
all by means of direct manipulation of graphical objects. In other words the methodology is based
on interface-by-example, without the designer using a programming language. This system, called
DIGIS, for Direct Interactive Generation of Interactive Systems, is presently in the design phase with
prototyping being used to hone requirements and design, and to demonstrate preliminary results.
Insofar as results from human factors (ergonomics) research are available, they will be applied
to the design of the interactive system DIGIS itself, as well as to the target user interface. The
implementation of DIGIS is done in the locally designed parallel object-oriented language Procol, a
superset of C. It is built to be easily portable to existing windowing environments on workstations
and personal computers, but the initial target is the X window system.

1. Introduction

Lots of applications are waiting for a usable human-computer interface. Such
an interface would be based on sound visualization techniques and ergonomic
principles, and be tailored to the intended group of users. If more than one user group
would be involved this could result in several interfaces to the same collection of
application functions. 'This many-to-one relation implies a loose coupling between
the interface and the application functions.

The emerging visual and audio possibilities in interface technology have to
be applied with care and intelligence. In the first instance a user interface should
adhere to some existing use metaphor. It is a fallacy, however, to asssume that the
full benefits of a new technology can be reaped when trying to squeeze everything
into the harness of existing traditional methodology. New technologies have new
possibilities and consequences: a car is not a coach, and a user interface is not a
desktop.

Assuming that a collection of executable application functions exist, and as
suming that their procedural interface can be described in an application interface
model, we distinguish three major areas in the construction of a graphical user
interface (GUI):

• Static or Layout part: graphical presentation, positioning, and constraints
between presentation components (alignments, connectedness, ...);

355

P. Dewilde and J. Vandewalle (eds.). Computer Systems and Software Engineering. 355-362.
© 1992 Kluwer Academic Publishers.

www.manaraa.com

356 J. VAN DEN BOS

• Dynamic or Behavioral part: detennines the behavior of the presentation as
a (partial) ordering in time in accordance with the user-executed dialogue;

• Coupling part: links input values to application functions, and maps pos
sible application results to interface presentations.

Many so-called interface builders have been presented at scientific conferences,
some are commercially available. For an overview see a more detailed paper on
the project DIGIS [1]. However, few or none of these systems offer support for
the Dynamic or the Coupling part: that usually has to be accomplished by writing
pieces of code in a programming language.

It is sort of natural to expect that the construction of a GUI is carried out by visual
means, that is by Direct Manipulation of graphical objects representing interaction
tools, constraints, grouping, dialogue editors, etc. In practice however, several or
all of these parts have to done by programming.

It is also accepted practice that the designer of a human-computer interface is a
programmer. Translated to the automobile world, we would have a designer with a
background of a car mechanic.

But an interface designer needs different qualities. For a GUI it is clearly
required that he know about graphics design in the context of the limited facilities
a bitmapped screen (often without colors) offers. He has to have a background
in computers to detennine feasible and optimal solutions. He must have some
knowledge of cognitive ergonomics, or human factors as it is called in America.
Finally, he ought to have an understanding of the general application area: architects
require different interfaces from greengrocers. In other words, the software engineer
who plays the role of interface designer must be more versatile than the software
engineer building non-interactive applications. It is clear that special education in
this area is badly needed.

2. DIGIS Description

The purpose of DIGIS is to provide a software engineering environment for user
interface design, sometimes abbreviated as UIDE. This environment is itself an
interactive and graphical system consisting of a graphical editor with tools tailored
to the design of (graphical) target user interfaces (TUI). It draws on a toolkit with
adaptable Interaction Tools (IT), and a library of application functions of which
the procedural interfaces (AID = application interface description) are known. The
graphical editor almost exclusively employs direct manipulation techniques for
copying, moving, scaling, connecting, etc. graphical objects. DIGIS generates a
TUI, and couples it via the AI, to the application functions (see Fig. 1 upper part).
Subsequently, the generated TUI can function as input to DIGIS for modification,
correction, refinement and extension (see Fig. 1 lower part).

The application procedures are assumed to be available. The interaction tool
(IT) kit first has to be built. It is to contain at least a skeleton for each IT in a set

www.manaraa.com

DIRECT MANIPULATION AS A BASIS

DIGIS

DIGIS

TUI

AI

Appl

-GENERATE-

TUI

AI

Appl

-ITERA TE-

357

Fig. 1. The global architecture ofDIGIS. At the top the generation, at bottom the iteration
cycle. (ITK = input tool kit, AID = application interface description, TUI = target user
interface, AI = application interface)

of complete and sufficient ITs for TUI design. An interaction tool is defined here
as a method (a program component) that prompts for, reads and echoes user input,
updates the state of the interaction tool, and that can be linked to a function. This
function can be an interface function, an application function, or both.

Tool kits from existing interface standards, such as OpenLook and Motif, could
be used as well. But rather than standardizing on a set ofITs with fixed presentation,
it appears more user-friendly to provide the designer with means to modify and
adapt the available ITs, and thus the IT kit.

The functional requirements set out for DIGIS are:

• Interaction tool kit (ITK)
• Adaptable basic ITK: presentation, interaction style
• Comp·osite interaction tools built from basic interaction tools
• Multiple interaction tool kits (OpenLook, Motif)
• Placing, moving, sizing, and copying interaction tools

www.manaraa.com

358 J. VAN DEN BOS

• Grouping interface components on screen
• Aids for constraints between interface presentation components
• Specification of dialogue: sequences, alternatives, repetitions
• All user input handled by user interface
• Interface output (possibly from application) handled by interface
• Application (esp. graphics) output rendered by application in application

window(s) provided by DIGIS
• Saving and loading of intermediate TUI designs for possible modification
• Coupling to existing and new applications
• Interface coupled to application functions in C and other languages
• Methods to graphically link TVI to application and interface functions

parameteriess coupling
mapping to in parameters in function parameter lists
mapping out parameters from functions to interface output

• Rapid prototyping by linking to stubs
• Accomodates various global interaction styles with local uniformity
• Portability to various window systems
• ALL BY DIRECT MANIPULATION

Essential is the last requirement Where other interface builders use a mixture
of programming and graphical manipulation, DIGIS stipulates that building the
interface and coupling it to the application functions must be done by direct ma
nipulation. This implies that with the exception of entering text (e.g. for labeling),
all definition, manipulation and modification of the TUI being worked on should
be done by the mouse operating on the graphical objects in the screen image of the
TVI.

For pragmatic and philosopical reasons DIGIS is restricted to TVIs that do not
allow the direct manipulation of application objects. To clarify this, take a screen
oriented word processor. These programs often allow the selection of a piece of
text that can subsequently be moved or copied to another place in the text. For
such a TVI, DIGIS would support the (extended) selection of the text, but would
not be able to move the text, the latter being the task of the application. These
kinds of applications are invariably characterized by a spaghetti-type interweaving
of interface and application.

But the goal of DIGIS is to maintain a strict separation between interface
functions and application functions. DIGIS abstracts from the semantics of the
application. This restriction precludes the construction of DIGIS in a bootstrap
mode. Bootstrapping can only be done partially, as long as no direct manipulation
of application objects, here DIGIS graphical objects, is concerned. Said in other
words, DIGIS is not a visual programming environment, not even for a subset of
applications, such as graphical ones.

A second restriction is the requirement of an existing IT kit. In practice this
means that we have built our own IT kit by means of programming. Care has

www.manaraa.com

DIRECT MANIPULATION AS A BASIS 359

been taken to use parameterization, so that presentation and interaction style (what
physical triggers, e.g. buttons, to use to trigger the IT) can be modified, when taking
a copy of the IT from the tool kit for the TVI.

A third restriction is an unknown. It is hard to predict that one DIGIS system
would cover all possible TUIs. For instance, (image) space plays an important role
in the general tools that DIGIS provides to build a TUI. But many applications,
such as real-time process control, deal with time in a rather precise manner.

This would have obvious results for the general tools that DIGIS had to provide
in those cases. It would even have repercussions on the description of the application
procedural interface, the AID. Data about the actual duration of (paths in) time
critical functions would have to be known. This would not only make the TUI
computer-dependent, but in a distributed run-time processing environment, the TUI
designer would also be forced to indicate in one way or another, which processor
(given inhomogeneity) would have to be selected. Another potential problem could
be a TVI for an information system. It seems that we can build such a TVI with
confidence, but if the relation of the TUI with the data became too strong, an
application data interface description might well be necessary.

At present we are constructing our third DIGIS prototype, analyzed and designed
by means of the object modeling method OMT [4]. It it still restricted to the
specification of the static part of a TVI. Presentations of ITs can be taken from
the IT kit, and be positioned, copied, moved, and scaled by means of IT shadow
objects (see [1]). ITs on the intermediate TUI can be grouped in Panels, which act
like composite ITs. These Panels can also be added to the IT kit.

A problem here are the layout constraints, such as alignments (horizontal,
vertical, diagonal, ...), fixed or relative dictances between ITs, etc. In principle,
all this can be solved by letting the designer think in terms of (2D) coordinates.
From an ergonomic point of view it appears better to offer the designer higher-level
concepts, such as iron bars (for fixed distance), springs (for maintaining relative
distance), hinges (for connections), and so forth.

The static part could definitely benefit from ergonomic rules, guiding the layout,
information density, use of color and patterns, etc. One could think here of help files
for consultation, or pemaps even better, automatic help in the form of suggestions.
It is tempting to say that expert systems could help here.

The next problem to be solved is the dynamic part of the TVI. This deals with
the behavior of the TVI in time, as a result of the dialogue between user and TUI.
We call this the dialogue editor. In fact it already plays a role in the composition of
ITs into a Panel, because composition in general implies a (sub) dialogue over the
constituent ITs. This part appears to be harder to solve by direct manipulation than
the static part. The reason is that in the static part we are solving graphical problems
graphically. Specifying the dynamic part means using graphical means to define
ordering of the dialogue components and the resulting difference in presentations,
in time. In Fig. 2 a possible solution is suggested, but event-driven state diagrams
or, equivalently, (augmented) regular expressions [3], could be used as well.

www.manaraa.com

360 J. VAN DEN BOS

TARGET WINDOW

EXAMPLE PANEL

/Testl /Edit! /Quit!

It;B

--E}-0-

Fig. 2. A proposal for a dialogue editor for DIGIS. At the top the intended target user
interface. In the middle the editor with an action graph of the dialogue. At the bottom the
4 basic primitives (sequence, selection, repetition, and guarded execution) from which an
action graph can be composed, are shown, together with a linear notation.

Finally, ITs have to be linked to ITs or application functions. To be more precise,
for coupling to application functions, the output or results of (composite) ITs have
to be mapped to the parameter lists of the application function involved. The sim
plest case is where the activation of an IT triggers the function, without any (new)
information being transferred. But in general, results have to be mapped to one or
more parameters in a parameter list. This may even require some transformations,
e.g. from string to numeric, or from integer to float, or assigning data to fields in
a structure or message. It is conceivable that DIGIS offers a number of standard
'mappers' to do this, although strictly speaking, this should be part of the appli
cation. The most complex case is when the application function returns a result,
important for the status of the TUI. This is commonly called semantic feedback.
It immediately suggests that ITs are not only activated by a user, but also by the
application.

An artist's impression on how to accomplish part of the job is presented in
Fig. 3. It is assumed here that an AID is available, or has been made, so that the
parameter list can be graphically and textually displayed (middle part of figure).

The example links a composite IT with one button (Save) and two text fields
(D i r and F i 1 e) to a function which saves the named file from a given directory.
The designer specifies this by displaying first the application routine window. The
coupling option of the Save button pops up a menu, with the option to link to
application. He maps by pointing to this menu item and dragging an arrow point to
the name of the routine (SaveFile). Subsequently, by similar methods he maps
the state of the text fields to parameters Dirname, and FileName, resp. The
success or failure of this operation (Resul t) is in this case not used: the designer

www.manaraa.com

DIRECI' MANIPULATION AS A BASIS 361

TARGET WINDOII

MISCELLANEOUS

Fig. 3. Linking an Interaction Tool to an application function by means of pop-up menus
and direct manipulation (pointing and connecting arrows). The middle part shows the
procedural interface of the application function. The arrow to the bottom part indicates that
the semantic feedback of the function is discarded.

indicates that it has to be discarded.

2.1. ERGONOMICS

All three parts could obviously benefit from (cognitive) ergonomics. The problem
is that this discipline has not put forward a single comprehensive theory from which
a body of rules and guidelines could be drawn. Partial results on models for task
solution have been presented, but empirical results are equivocal and inconclusive.
So lots of rules seem little better than common sense, experience, or folk wisdom.
Of course, graphics design is an established body of knowledge, daily practiced on
e.g. newspaper layout. But it deals only with the static part. It remains to be seen
if a layout meant to be interactive, should be similar to a static layout only meant
for viewing or reading. Yet I still consider this our best source for guiding rules in
interface design.

In DIGIS, ergonomics crops up at two places. First of course in the target
user interface onder construction. But we also need ergonomic guidance for the
design of DIGIS itself: what sort of techniques, and how, should be provided to the
designer? Should they vary with designers?

Ideally a body of rules should be put in an expert system. But the state of
knowledge being what it is, one would perhaps couple two areas with questionable

www.manaraa.com

362 J. VANDENBOS

results: artificial intelligence and ergonomics.

2.2. IMPLEMENTATION

The IT kit, as well as all other parts and techniques of DIGIS are programmed in
the object-oriented language (OOL) Procol [2]. It is a language we designed as a
superset of C. Different from most OOLs, all its objects execute in parallel. Further
more, it uses delegation (more tailored to a distributive processing environment)
rather than inheritance. It also offers (one-way) constraints and, very appropriate
for input tools, Procol's objects all contain an explicit message protocol, in which
access ordering and clientele may be specified. This protocol maps very closely
to a dialogue. Because Procol uses C as its host language, it is fully compatible
with existing C libraries, in particular the X windows library, which is our initial
platform.

The DIGIS implementation uses a well-defined and localized channel to X, so
that dependencies on X are minimized. This is because the intention is to make
DIGIS portable to other systems, such as Microsoft's Wmdows.

3. Conclusion

We have discussed principles of graphical user interface construction, and their
embedding in an environment for user interface design, DIGIS. Three important
subsystems have been distinguished: the static or layout part, the dynamic or
dialogue part, and the coupling to application part. In DIGIS all these parts are
specified without programming. Instead it uses direct manipulation of graphical
objects on the screen. A prototype of the first subsystem is available, as well as
preliminary designs of the other subsystems.

Acknowledgements

This project is supported by STW, the Foundation for Technical Research in the
Netherlands. I also thank my collaborators Hans de Bruin and Peter Bouwman.

References

1. Van den Bos, J. and Laffra, C.: 1990, 'Project DIGIS: Building Interactive Applications by Direct
Manipulation', Comp.Graphics Forum, 9, 181-193

2. Van den Bos, J. and Laffra, C.: 1991, 'PROCOL, A concurrent object-oriented language with
protocols, delegation and constraints', Acta Informatica, 28,511-538

3. Van den Bos, J.: 1988, 'ABSTRACT INTERACTION TOOLS: A Language for User Interface
Management Systems', ACM -TO PLAS (Transactions on Programming Languages and Systems),
10,2,215-247.

4. Rumbaugh, J., Blaha, M., Premerlani, w., Eddy, E, Lorensen, w.: 1991, Object-oriented nwdeling
and design, Prentice-Hall, New York

www.manaraa.com

Visualization of Volumetric Medical Image Data

K.J. ZUIDERVELD AND M.A. VIERGEVER
Computer Vision Research Group,

University Hospital Utrecht, room E.02.222,
Heidelberglaan 100, 3584 CX Utrecht, The Netherlands

E-mail: karel@cv.TUll.nl.max@cv.TUll.nl

Abstract. This paper presents on the state-of-the-art of volume visualization methods that are
tuned to visualization of medical datasets. After topics as sampling theory, data preparation, and
shading, various visualization strategies are explained with an emphasis on algorithms that do
not rely on special hardware. Special attention is paid to strategies that improve image generation
speed, while techniques for improvement of image quality are also discussed. Finally, trends in
this area of research are identified.

1. Introduction

Digital medical imaging modalities, e.g., Computed Tomography (CT) and Mag
netic Resonance Imaging (MRI), are important means of providing information
about anatomical structures. These modalities produce 3D image data sets, usu
ally consisting of between 8 and 300 cross-sectional slices, where each slice has
a resolution of 2562 or 5122 pixels. A good understanding of the 3D anatomy is
of paramount importance for diagnosis, surgery planning, and therapy planning.
Consequently, it is essential to extract the relevant information contained in the
vast amount of 3D image data and present it to the clinician in such a way that
complex anatomical structures and their interrelationships can be better compre
hended.

It has appeared virtually impossible to mentally reconstruct a 3D picture that is
consistent with the large number of cross-sectional images. This is true in particular
for highly pathological studies that lack a frame of reference as is provided by
knowledge of the human anatomy in non-pathological cases. Volume visualization
has already proven useful as an aid in diagnostics and therapy planning, especially
in craniofacial surgery and orthopaedics [1; 2].

3D datasets represent a wealth of image features of which only a minor fraction
is of real interest. In addition, clinicians want to have the ability to visualize specific
tissues or organs, usually in relation to their surrounding structures. An extremely
crucial step in the process of visualization is, therefore, a segmentationl of the
volume data which identifies objects of interest.

There is a growing tendency to combine volume data from different modalities,
e.g., anatomical information (obtained with CT and MRI) with images providing
functional information (e.g., Positron Emission Tomography (PET) and Single

1 Segmentation is the division of an image into meaningful entities. In the strict sense of the
term segmentation, the meaning of the entities is not explicit until a. classification (or labelling)
has been performed. In this paper we interpret segmentation in the wide sense; i.e., with inclusion
of the classification step.

363

P. Dewilde and J. Vandewalle (eds.); Computer Systems and Software Engineering. 363-385.
© 1992 KJuwer Academic Publishers.

www.manaraa.com

364 K. J. ZUIDERVELD AND M. A. VIERGEVER

Positron Emission Computer Tomography (SPECT) data). Here, even more than
for single modality images, the problem of reconstructing mentally a 3D picture
comprising the information provided by the various modalities occurs. Integrated
3D display of multimodality images, depicting simultaneously aspects of anatomy
and function, is called for. An important prerequisite for multimodality imaging is
the availability of methods that -reliably match the images acquired from different
sources. We therefore find that work on volume visualization heavily relies on
developments in the areas of segmentation and multimodality imaging.

Medical volume visualization is an interdisciplinary field; it uses skills and expe
rience from areas as image processing, computer graphics, numerical mathematics,
visual psychophysics, various branches of medicine, and ergonomics. It would be
beyond the scope of this paper to extensively survey the role of each of these dis
ciplines. We have chosen to concentrate on the methodology of visualization and
virtually ignore important topics as user interfaces, parallel hardware and clinical
applications.

In this paper, we give a state-of-the-art report of volume visualization methods
for medical image data~ We first explicitly address various topics that we consider
important for obtaining a general understanding of the main problems in volume
visualization, namely data preparation, sampling aspects and shading. We then
survey currently used methods for medical volume visualization, with an emphasis
on algorithms that do not rely on special hardware. Next, attention is paid to
techniques that improve image generation speed and to strategies for improvements
of image quality. Finally, some trends in the a.rea of medical volume visualization
are identified.

2. Basic topics

This section provides some information on data preparation, segmentation, sam
pling aspects, and shading. We feel that an explicit discussion of these topics is
helpful to get a better understanding of the problems that various visualization
methods try to deal with.

2.1. DATA PREPARATION AND SEGMENTATION

An important step in the visualiza.tion pipeline is data preparation. This includes
3D patient motion correction;
multimodality matching, e.g., anatomical information (CT, MRI) with func-

• tional information (SPECT, PET, EEG);
image correction, e.g., for inhomogeneous magnetic fields in MRI data;
interpolation;
contrast enhancement.

The prepared volume data contains millions of volume elements (voxels), of which
only a part is really of interest; a reliable segmentation step that identifies and

www.manaraa.com

VISUALIZA nON OF VOLUMETRIC MEDICAL IMAGE DATA 365

classifies these interesting voxels is crucial. Much work still has to be done regarding
the development of satisfactory (and, given the size of the dataset, fast) algorithms
for automatic 3D object recognition and tissue classification.

In one of the many application areas, craniofacial reconstruction, the main tissue
of interest is bone. Here one can take advantage of the relationship between tissue
density and image grey level in CT. It can safely be assumed that all density values
above a certain greYValue correspond to bone, so simple thresholding suffices to
segment out bone voxels in the dataset (however, due to partial volume effects,
some voxels containing bone will not be recognized). Segmentation of CT data
into the reasonably wide classes fat, soft tissue and bone using intensity values
only is adequate for many purposes [3]. It is therefore not surprising that the vast
majority of clinical (and theoretical) papers on medical volume visualization bear
upon CT data and are restricted to visualizing bone (or sometimes bone and soft
tissue).

If automatic segmentation is not possible, interesting image features must be
manually entered. This is usually done in an interactive session on a slice-by-slice
basis. Since a patient study can contain hundreds of relevant contours, complete
manual contouring is extremely cumbersome and thus expensive. There is a clear
need for better editing tools to reduce this burden [4].

The segmentation step results in a model of the original data. Various models
have been proposed, such as a series of contours, a volume of binary voxels, or
an encoded version of the latter (e.g., using octrees). These possibilities will be
discussed in more detail in the sequel. Using a model has the advantage that one
obtains a large amount of data reduction; on the other hand do errors in the model,
e.g., incorrect tissue classifications, likely lead to artifacts.

In clinical studies, the separation between individual slices is usually greater
than the pixel size of the slices (especially in studies obtained using standard s
canning protocols not aimed at 3D reconstruction). These datasets suffer from
irreversible undersampling, leading to severe aliasing artifacts that can not be re
moved by greyvalue interpolation. In such cases, acceptable results can be obtained
using a shape-based interpolation algorithm [5], that marks interesting voxels of
the segmented volume using the shapes of the cross-sectional boundaries from
adjacent slices.

Visualization software initially only relied on models, mainly because there was
not enough computational power and memory available to handle large datasets.
More recent algorithms tend to use the original volume data, but may, in addition,
also use coded versions thereof to exclude irrelevant image data during the volume
visualization.

2.2. SAMPLING ASPECTS

In order to recognize potential problems of volume visualization, a few issues re
lated to sampling theory must be addressed.

www.manaraa.com

366 K. J. ZUIDERVELD AND M. A. VIERGEVER

The input volume consists of samples at regular spatial (and possibly tempo
ral) intervals. In many visualization algorithms, data has to be interpolated,
often thought of as the process of "filling in" points between original data. Ac
tually, interpolation is reconstructing the continuous function from its discrete
sample points, after which intermediate points are obtained by resampling the
continuous function. Assuming the volume dataset has been properly sampled,
reconstruction of the continuous function (the original 3D scene) is possible
by convolving the samples with a large kernel containing a 3D sinc function.
In practice, computing the original 3D continuous function in this way is just
too expensive, given the size of the kernel and the dataset. A more feasible
approach is to combine the reconstruction of the continuous function with the
resampling step, which can be done using any interpolation algorithm. Nearest
neighbour and trilinear interpolation is used almost exclusively here. However,
these algorithms have been found to show rather poor spectral behaviour [6J.
Cubic splines have superior spectral characteristics, but are computationally
more expensive [7J.

Modalities as CT and MRI have a limited resolution; the obtained volume
datasets are therefore band-Limited (filtered) representations of the original
3D scene that is not band-limited. Problems can be expected with the visu
alization of small or thin objects (e.g., tissue boundaries); a good example
of this phenomenon is the partial volume effect associated with CT imaging,
which is essentially the result of the low-pass bandfiltering associated with the
tomographic reconstruction.

In volume rendering, we are essentially calculating a band-limited 2D projec
tion of a 3D scene. In ray casting algorithms, which will be discussed in the
next section, the number of rays should be chosen high enough to avoid sam
pling artifacts (aliasing). However, the number of rays is usually fixed (one
per output pixel) which implies that we depend on 3D band-limiting to avoid
aliasing in the 2D projection. If this provides for insufficient sampling, arti
facts can be avoided either by slightly blurring the 3D dataset or by increasing
the number of rays cast (supersampling).

2.3. SHADING

Volume visualization relies .. on shading techniques to produce realistic images.
These techniques model the process of light absorption, reflection, and transmis
sion along surfaces; this process largely depends on the properties of the surface
material.

Although usually not explicitly mentioned, a few topics should be addressed
when shading calculations are performed at arbitrary positions in the volume.

www.manaraa.com

VISUALIZATION OF VOLUMETRIC MEDICAL IMAGE DATA 367

2.3.1. Surface classification

We distinguish two approaches to determine the location of object surfaces, de
pending on the availability of a classification volume:

Classify surface based on greylevel data
With this approach, the (interpolated) sample point greyvalue is checked a
gainst ranges that are typical for specific tissues. If the greyvalue falls outside
these ranges, the sample point can be skipped. The binary decision whether
or not a voxel belongs to a limited set of tissues may lead to severe artifacts.
This can be circumvented by allowing probabilistic classifications that set the
sample point opacity to values between 0 and 1 [8].
Classify surface based on classification data
With this approach, the presence of a surface is determined from the classifi
cation data, which usually compromises a volume with the same dimensions
as the grey level data. Therefore, the classification volume also consists of regu
larly spaced samples. Strictly speaking, one should interpolate between classi
fication data from voxels adjacent to the spatial point of interest to obtain the
required information, which results in probabilistic classifications even when
the original classification data is binary.
Most volume visualization approaches settle for nearest neighbour interpola
tion by - either explicitly or, more often, implicitly - using the classification
of the voxel nearest to the sample point.

From the point of signal theory, the first approach is preferable if there is a clear
relationship between grey values and tissues (the classification step represents a
non-linear transformation that has undesired spectral properties which cause alias
ing artifacts in the resulting image). However, the implicit assumption of proper
sampling is often violated; in such cases, shaped based interpolation of the (binary)
classification data offers interesting possibilities.

It is interesting to note that both approaches support the notion of probabilistic
classification values (e.g., a voxel contains 40% bone); this value can be used to
modify the opacity of the sample point.

2.3.2. Surface orientation

Light models that are subsequently used in the shading process often require the
value of the surface normal at the sample position. The following methods have
been proposed to determine the surface normal:

Weighted surface gradient
This method is used in implementations where memory usage should be kept
to a minimum; an approximation of the surface normal is directly calculated
from the classification data. Owing to the binary nature of the segmented data,
only a limited number of normal directions are possible. This facilitates fast
implementations (e.g., using look-up tables), but also leads to visible artifacts
as intensity contouring [9].

www.manaraa.com

368 K. J. ZUIDERVELD AND M. A. VIERGEVER

Thanks to recent hardware developments, memory usage has become less crit
ical, which implies that this method is gradually superseded by others. How
ever, specialized hardware architectures for medical volume visualization still
rely on this method [1Oj 11].
Normalized greylevel gradient
A currently popular method is the use of the normalized greylevel gradient as
the surface normal [12]. The gradient is calculated either from the greylevels
of its 6 first order neighbours or from the greylevel data in a second order
(3x3x3) neighbourhood of the point of interest. Normalization of the resulting
gradient value then yields the surface normal. This method does not suffer
from contouring artifacts due to its high dynamic range.
Spatially adaptive gradient
Pommert et al. [13] report that for thin objects even a first order neighbour
hood may be too large. They present an algorithm that adapts to the thickness
of the object and demonstrate that the resulting method significantly improves
the accuracy of the computed surface normals. Essentially, they use a simple
criterion based on the local frequency contents to choose from two differently
sized filters. This method can be generalized to a multi scale approach based
on Gaussian filtering to derive the local gradient value [14]. Owing to the huge
computational requirements, this multiscale approach is at present not suited
for practical applications.

While these methods calculate the surface normal at the grid points, sample points
may not coincide with these positions and interpolation issues should be explicitly
addressed again.

Surface normal calculations represent a heavy computational burden, hence
most implementations perform these calculations during a preprocessing step. An
interesting issue is storage demands: Since "dumb" storage would require too much
memory (using 3 floats per voxel requires about 200 MBytes for a 2563 dataset),
data reduction must be used. One way to achieve this is by only storing gradient
values for voxels that lie on the surfaces of segmented structures. Another option
is vector discretization where for each vector two components are quantized to a
low number of bits whereas of the third component only the sign is stored, taking
into account that the surface normal is an unit vector.

2.3.3. Light reflection

Given the presence of the surface and its orientation, calculation of the light that
is reflected from the surface is straightforward. Since photorealism is not required,
a simple light reflection model is adequate for most visualization purposes. The
customary model is that of Phong [15], which separates the reflected light into
three components:
(i) an ambient component, representing the contribution from various distributed

light sources that are too difficult to model. This is usually a constant term

www.manaraa.com

VISUALIZATION OF VOLUMETRIC MEDICAL IMAGE DATA 369

which only depends on the ambient reflection coefficient of the surface and the
colour of the ambient light;

(ii) a diffuse component, representing reflection that radiates equally in all direc
tions. The amount of diffuse reflection only depends on the flux of the light
(which is obtained by calculating the inproduct of surface normal with the
direction of the light), it is independent of the viewer position.

(iii) a. specular component, representing the "shiny" reflections which are typical
for metal-like 3urfaces. This contribution depends on the surface orientation,
the position of the light source(s) and the viewer position. Modelling of surface
shininess is a quite expensive operation (and therefore implemented for choice
using look-up tables).

Surface transparency is not supported by the Phong light model, but can be in
cluded by a straightforward extension.

If the specular contribution is omitted, fast implementations are feasible since
colours at the voxel positions are then independent of the viewer position. The light
reflected by each voxel of the volume can be precalculated provided the position
of the light source(s) is unchanged, which gives to fast image generation speeds
but relatively poor image quality (the observer is "moving" around the object). In
general, better image quality can be obtained against higher computational costs.

We notice, in passing, that dissimilarities between images of various institu
tions usually do not originate from fundamental disparities in the visualization
approaches, but are caused by choosing different light models.

3. Visualization methods

During the second half of the eighties, numerous visualization methods have been
developed and applied to clinical problems, with varying success. Visualization
strategies that focus on the display of surfaces can be divided into two categories:
Surface rendering and volume rendering (e.g., [16]). Surface rendering is performed
by describing the objects as well-defined, infinitesimally thin geometrical primitives
and using shading techniques from the field of computer graphics to calculate the
amount of reflected light from each surface element. In contrast, volume rendering
uses volume elements as its basic primitives; we distinguish between binary class
volume rendering, which uses binary classification da~ and graded class volume
rendering, which incorporates probabilistic classification data in the visualization
algorithm [17].

Other well-known visualization algorithms are multiplanar reformatting and
transmission-oriented methods; the latter is often used for 3D display of noisy
volume datasets.

www.manaraa.com

370 K. J. ZUIDERVELD AND M. A. VIERGEVER

3.1. MULTIPLANAR REFORMATTING

If we define volume visualization as interactive exploration of volume data, an im
portant technique is multiplanar reformatting which resamples the volume data.
(usually along a. plane) and displays the result in a separate image. In its simplest
form, a single orthogonal section, through the volume is displayed. More advanced
implementations simultaneously show multiple orthogonal sections (coronal, sagit
tal, lateral), are able to display greyvalues along planes of arbitrary directions
(oblique sectioning), or even along curved lines that can be interactively drawn
[18]. Thanks to the simplicity of these techniques, current worksta.tion technology
facilitates real-time display and manipulation of cutplanes in volume data.

3.2. TRIANGULATION BASED ON SURFACE CONTOURS

In triangulation methods, the model of the volume consists of a set of contours rep
resenting surfaces of interest; the basic idea is to fit a skin over the individual con
tours using triangular surface elements. Various algorithms for triangulation have
been published [19; 20);" they generally try to minimize a cost function (e.g., total
triangular surface, lateral length, volume). The triangulation is followed by render
ing the obtained primitives using a conventional graphics pipeline; the graphical
hardware of modern workstations is fast enough to achieve real-time visualization
of surfaces with moderate complexity.

Organs can have very complex topological structures, which makes successful
triangulation dependent on substantial help from experienced users. Recently, an
algorithm was published which calculates Reeb graphs that describe the topological
relation between contours in successive cross-sections [21]; initial results indicate
that, aided by some a-priori information, this algorithm works better than methods
based on human interaction.

In general, triangulation methods yield coarse images. Their use is therefore
limited to applications for which high detail is irrelevant.

3.3. ISO-VALUE CONTOUR DISPLAY

Iso-value contour methods are especially tailored towards the calculation and dis
play of iso-value surfaces in volume data; they are computationally intensive, but
yield high quality images.

One of the first published algorithms, called marching cubes, converts the o
riginal dataset into a very fine polygon mesh, suitable for rendering by graphic
accelerators [22]. Surface topologies are determined within logical cubes that are
defined by eight voxels, four each from two adjacent slices. The positions of the
polygon surface(s) within this cube are then determined by trilinear interpolation
of greyvalues.

Recently, an improved triangulation method was presented by Wallin [23}; it
explicitly takes into account surface coherence by using a temporary list in which

www.manaraa.com

VISUALIZATION OF VOLUMETRIC MEDICAL IMAGE DATA 371

the polygon edges are stored. Subsequently, the edge list is traversed to produce
surfaces of ordered polygons.

These algorithms typically generate numerous tiny polygons that occupy only
a small area of the final image. Although it is possible to decrease the number of
triangles by a post-processing step, it is often not performed because of resulting
image degradation. The sheer number of triangles represents a serious burden
on memory bandwidth and processing power of machines; only special purpose
graphics hardware is able to provide acceptable image generation times.

In contrast, the dividing cubes algorithm [24] circumvents this problem by choos
ing a surface element about equal to the pixel size, which results in a cloud of
points. Each voxel of the dataset is subdivided into small cubes with a size that
matches the pixel size of the output image; the densities at the corners of each cube
are calculated from the eight corresponding voxel vertices by trilinear interpola
tion. Each cube is then classified as being outside the surface, inside the surface, or
intersecting the surface. For those cubes that lie on the surface, the gradient vector
is calculated, shading is performed and the resulting colour is projected onto the
viewing plane.

These surface rendering algorithms are not popular although they result in
high-quality display and do not require previous volume segmentation. One of
the main drawbacks is their inability to display non-iso-value surfaces, which are
often found in MRI and SPEeT datasets. However, these algorithms are well
suited for specific clinical applications [25; 26J; the most probable reasons for their
unpopularity is their obscurity and the slow speed on non-graphics hardware.

3.4. BINARY CLASS VOLUME RENDERING

Binary class volume rendering methods are currently the most popular in clinical
applications, because they are fairly fast and deliver good image quality [27]. In
a preprocessing step, relevant object surfaces are marked in a binary volume; this
segmentation is sometimes done during the image generation step by applying
greyvalue thresholding.

Shading calculations are only required for voxels on surface boundaries; local
surface orientation is usually obtained by applying a 3D gradient operator on the
segmentation data [28] or on the original volume data [29J.

Close inspection of actual implementations reveals some interesting differences.
Globally, two ray casting methods can be distinguished: Given the scene, project
voxels onto the screen (forward mapping or object order algorithms) and given the
screen, cast rays into the scene (backward mapping or image order algorithms).

With backward mapping, values of the original dataset rarely fall exactly a
long the ray. In order to obtain sample values along the ray, approximations are
calculated by interpolation of the volume data during the actual ray casting step
[8].

Forward mapping algorithms directly project the volume data on the image

www.manaraa.com

372 K. J. ZUIDERVELD AND M. A. VIERGEVER

plane. In order to avoid problems with points not mapping onto grid position
s of the resulting image, the complete 3D volume data must be geometrically
transformed to match the desired resolution of the output image. Calculation of
a different viewpoint thus implies a geometrical transformation of the complete
dataset, a time-consuming operation [30; 12].

These techniques suffer from' the problem of having to make binary classifica
tions: A voxel contains either a surface or it does not. As a result, these methods
can exhibit spurious surfaces (false positives) or erroneous holes in surfaces (false
negatives).

3.5. GRADED CLASS VOLUME RENDERING

Graded class volume rendering techniques incorporate the concept of probabilis
tic classification into the visualization by extending the used light model with
transparency. Along each ray cast into the scene, a vector of sample colours and
opacities is determined. A fully opaque background is draped behind the scene,
after which the colours and opacities along the ray are merged with each other by
compositing (often referred to as blending [30; 31]). The opacity of individual vox
els should be directly related to the probability of the presence of interesting tissue.
Consequently, good tissue classification algorithms are still required in volumetric
compositing; however, they do not need to provide perfect binary classifications.

In CT datasets, probabilistic classification of fat, soft tissue, and bone is feasible
using only the absolute grey levels of voxels; examples of such classifications have
been published by various groups [32; 33]. Since users are mainly interested in tissue
boundaries, the gradient amplitude is often used to reduce the opacity of voxels in
homogeneous parts of the volume that can be characterized by low gradient values
[8].

Volumetric compositing methods are rather demanding as concerns computa
tion time; reasonable image generation speeds can only be obtained by special
purpose hardware [34] and/or programming tricks [35; 36; 37]. Although the gen
erated images are of high quality, only a few reports have been made on clinical
applications [38; 3).

3.6. TRANSMISSION-ORIENTED METHODS

The use of algorithms for surface display causes problems when the original data
does not contain clear surface boundaries, as in SPECT and ultrasound imaging.
In such cases, transmission-oriented display is often considered a useful alternative,
of which X-ray projection and brightest voxel display are the most frequently used
techniques.

The X-ray projection method simulates X-ray absorption by assigning an ab
sorption coefficient to each voxel; subsequently, the total absorption along rays is
calculated. This method can be used to calculate simulated X-ray images from

www.manaraa.com

VISUALIZATION OF VOLUMETRIC MEDICAL IMAGE DATA 373

CT volume data.
Brightest voxel display (also referred to as Maximum Intensity Projection,

MIP for short) displays the maximum value encountered along each ray cast into
the volume. This technique is currently popular for the display of Magnetic Res
onance Angiography (MRA) volume data, where each voxel value represents the
amount of local blood flow. Unfortunately, MIP presents an inconsistent spatial
perspective to the user; high intensity values obscure other features of interest and
lead to irregular depth positions of the projected voxels. There is a clear need for
modified MIP algorithms; an example is the Closest Vessel Projection which limits
the projection range to the lumen of the detected vessel closest to the projection
plane [39]. Unfortunately, such algorithms tend to rely on preprocessing steps that
mark interesting voxels - a non-trivial classification problem on account of the
significant amount of noise in the volume data.

Transmission-oriented methods suffer from the same problem as any ray casting
method: The required geometrical transformation between object and screen space
implies resampling of the volume data. For reasons of speed, the resampling step
is often restricted to nearest neighbour interpolation, which can give disturbing
aliasing artifacts. Another disadvantage of these methods is their computational
burden. Since in principle each voxel of the volume data contributes to the output
image, the ray casting process is time consuming in contrast with surface display,
where techniques such as octree encoding and bounding volumes can be applied
to skip irrelevant subvolumes. In some applications, however, preprocessing algo
rithms are capable of reducing the amount of calculations by identifying relevant
structures. An example is the use of grey level thresholds to identify potential blood
vessels in MRA volume data.

For a good appraisal of the 3D structure, it is essential to dynamically change
the viewpoint (e.g., by continuously rotating the 3D object in front of the observer)
[40].

3.7. DrSCUSSION

Although extensive discussions on the relative merits and disadvantages of individ
ual techniques have been published (e.g., [41]), one of the most important lessons
learned is that, in general, there is no "best" method. The choice of a suitable
approach strongly depends, among others, on the specific application, the quality
of the volume dataset, and the available hardware.

Rendering techniques using binary classification data are often referred to as
more practical, since they are relatively easy to implement and have limited mem
ory requirements. Proponents of volumetric compositing point out that relatively
inexpensive parallel processors will soon be capable of "real-time" visualization.
Volume rendering also benefits from its greater functionality since the user has the
opportunity to tune the algorithm to produce surface-rendered views as needed. It
also requires less stringent preprocessing compared with surface rendering where

www.manaraa.com

374 K. J. ZUIDERVELD AND M. A. VIERGEVER

the quality of a rendition critically depends on correct binary characterization of
surfaces.

It is again important to note that most methods make the implicit assumption
that the volume data was obtained using "proper" sampling; unfortunately, medi
cal datasets are often severely undersampled along the scan direction. As a result,
the dataset cannot be reliably interpolated, which leads to classification errors
and shading artifacts. This explains the interest of the visualization community in
shape based interpolation.

Also, there is a continuing interest in better acquisition methods. Recently, spi
ral scanning CT [42] has been introduced which has great potential for high-quality
3D imaging. New acquisition methods as 3D Echography pose new challenges with
respect to 3D volume visualization and will likely lead to new visualization strate
gies [40; 43].

4. Improving image generation speed and quality

Given the basic visualization strategies, how can we optimize their performance
with respect to speed and quality? With the contemporary hardware, we can not
have the best of both worlds - yet. We will discuss how either of these contrary
objectives can be achieved.

4.1. IMPROVING IMAGE GENERATION SPEED

Strategies for speeding up image generation are based on precomputation of pa
rameters before the actual volumetric composition, taking advantage of coherence
in the dataset or the resulting image (octree, adaptive sampling), or improving
speed at the cost of image quality. Although we have attempted to categorize the
methods, it should be noted that practical implementations tend to rely on several
acceleration strategies, which precludes any strict categorization.

4.1.1. Adaptive sampling

Adaptive sampling, a method with roots in the field of computer graphics, was
first applied to volumetric compositing by Levoy [35]. It uses the presence of co
herence in the output image. A coarse image is produced by casting a sparse grid
of rays into the volume, calculating the resulting ray colours, and bilinearly inter
polating the obtained results. In regions of high image complexity the number of
rays is increased; this can be done by a recursive subdivision based on local colour
differences.

The method offers a good response time. Crude images can be obtained in a
relatively short time interval, followed by gradually improving images at regular
intervals as long the user does not change the rendering parameters. Since adaptive
sampling involves some overhead, the total rendering time increases slightly.

www.manaraa.com

VISUALIZATION OF VOLUMETRIC MEDICAL IMAGE DATA 375

4.1.2. Spatial encoding

Many datasets contain coherent regions of uninteresting voxels. Several techniques
have been developed for encoding coherence in volume data. Levoy [36] introduced
a hierarchical enumeration scheme using a pyramid of binary volumes. The basic
idea is' that during the volumetric compositing an interpolated sample is not in
teresting if all the 8 surrounding voxels have zero opacities. A volume is created
where each voxel contains a binary flag indicating the presence of tissue; from
this volume a hierarchical binary pyramid is constructed marking the presence of
non-zero opacities at various resolutions of the volume.

During ray casting, the pyramid is also traversed; at entering a cell its value is
tested. A value of zero implies total transparency, upon which the ray is advanced
to the next cell on the same level, thus saving time by pruning away uninteresting
regions of space. It must be noted that the pyramid, since it depends on opacities
rather than on the original data, must be recomputed whenever the user adjusts
opacity assignments.

A multiresolution approach has also been applied to iso-surface display. Wil
helms and Van Gelder [44] store local minima and maxima at various resolutions
in order to be able to skip cells in case the desired iso-value falls outside these
extrema.

The above techniques trade a. longer preprocessing step for faster generation
times; they do not cause any degradation in image quality.

Laur and Hanrahan [45} follow another strategy: They use a pyramidal volume
representation to store average opacity values as well as the estimated errors. This
approach is feasible thanks to the use of a splatting algorithm [37]; the required
reconstruction filter ("footprint") is calculated for each level of the pyramid. This
algorithm combines successive refinement with spatial encoding; when large er
rors are acceptable, rendering is performed at a low resolution which facilitates
interactive speeds.

Udupa and Odhner [46} assume a binary segmentation volume which they then
encode as an indexed list of voxels that lie on the surface of the object - voxels
that are entirely inside the object are neglected. The semi-boundary list contains,
besides the surface normals and voxel coordinates, an encoded representation ofthe
visibility of each cell side with respect to adjacent cells. During image reconstruc
tion, a simple table look-up is capable of determining potentially visible surface
cells; since these comprise only a small fraction, this approach leads to significant
computational savings. The final decision on visibility of the potentially visible
voxels is then made by projecting the voxels back-to-front, after which shading is
performed. The authors claim that, besides a great reduction in storage require
ments and rendering time, this encoding strategy is very suitable for interactive
manipulations as cut away views, mirror reflection and segmental movement.

www.manaraa.com

376 K. J. ZUIDERVELD AND M. A. VIERGEVER

4.1.3. Adaptive ray termination

Volumetric compositing techniques usually assume a back-to-front evaluation order
[30J. A mathematically equivalent formulation facilitates front-to-back (FTB) ray
casting. With FTB techniques, rays are assigned a colour and an opacity. Once
a. ray strikes an opaque object 9r has progressed a sufficient distance through a
semi-transparent object, the opacity accumulates to a level that the colour of the
ray stabilizes. Significant accelerations are obtained if the ray casting is terminated
as soon its opacity reaches a user defined threshold level. Low thresholds reduce
rendering time (typically a factor of 3 with an opacity threshold of 0.95), while
higher values increase image quality, but at higher costs [36J.

4.1.4. Precalculation of intermediate data

Depending on the specific algorithm used, several stages in the rendering process
can be calculated and stored for subsequent use during the rendering step. An
example of using precomputed data is Levoy's backward mapping method [8J. In
his implementation, shading of each voxel is performed before ray casting and the
result stored in an intermediate 3D dataset. The actual image generation step
then only consists of trilinear interpolations between voxel colours followed by a
compositing step. This approach does not have any effect on image quality when
shading is non-specular (independent of viewing direction); incorrect highlights are
introduced when specular shading is used. Levoy reports that observers are seldom
troubled by these effects. Another example of this technique can be found in [30J.

Foley et al. [47J present a method that is capable of approximating ray-traced
volumetric images in less than one second per image. The speed is obtained by
interpolating projection images that were calculated during a preprocessing step.
Since this method is not able to correctly handle occlusions, the interpolant con
tains severe artifacts; however, for some applications the high image generation
speeds may justify the errors.

A method by Gudmundsson and Randen [48J uses a list of surface points to take
advantage of coherence between successive projections with small rotation angles,
where the vast majority of surface points remains visible from one projection to
the next. If surface points have gone out of hiding (have become visible), a few new
rays have to be cast to calculate the corresponding output values; other values are
obtained by appropriate geometrical transformations.

Precalculation of data usually introduces small artifacts, of which incorrect
shading is the most frequent.

4.1.5. Simplification of visualization algorithms

Since the individual components used in the light model take different times to
compute, major speedups can be obtained by neglecting the specular component or
even the diffuse component. When enough memory for storing intermediate results

www.manaraa.com

VISUALIZATION OF VOLUMETRIC MEDICAL IMAGE DATA 311

is present, simplified shading can be implemented with successive refinement. Since
the compositing step has to be repeated here, this method trades a faster response
time against total computational costs.

Speed improvements can also be obtained by using nearest neighbourhood in
terpolation instead of more expensive interpolation methods. As already indicated,
this leads to aliasing artifacts.

The mostly used methods for speed improvement are implementation "hacks",
prominent amongst which are the use oflook-up tables for shading and using inte
ger calculations. They are usually tailored toward specific machine architectures,
taking the available memory and cost of floating point operations into account.

4.2. IMPROVING IMAGE QUALITY

Evaluation of image quality is difficult. A "gold standard" is usually not available,
in contrast with computer graphics applications where photorealism is the ultimate
goal. A possible method to evaluate image quality is to perform 3D data acquisition
on a phantom or to simulate the acquisition process and compare the rendered
image with the expected result. Pommert et al. [49; 13; 50] use the latter approach
to evaluate the image quality of various volume visualization algorithms.

Another approach to judge image quality is an evaluation of their ability to
communicate essential information to the user. Special effects like shadows and
perspective projection ("artistic devices" , see [51]) greatly enhance the depth per
ception of the user but are not trivial to implement, as will be explained in this
section.

We will discuss the main techniques for image quality improvements, again
using a categorization into five strategies.

4.2.1. Higher order interpolation

The frequently used trilinear interpolation is a poor reconstruction filter, since
it has only moderate frequency characteristics. A survey of various interpolation
algorithms [7] revealed that the desired sine interpolation kernel is best approxi
mated by cubic convolution interpolation. This will generally lead to sharper and
crisper images, but is in its generic 3D form computationally about 40 times more
expensive than simple trilinear interpolation.

4.2.2. Supersampling

There are essentially two variations, viz. supersampling of the input dataset and
supersampling during the image reconstruction.

The basic idea behind supersampling of the volume data is to interpolate ad
ditional samples between the acquired ones. This increases the effective sampling
rate of the dataset, so the accuracy of the rendering increases. Practice shows that

www.manaraa.com

378 K. I. ZUIDERVELD AND M. A. VIERGEVER

the improved quality hardly justifies the considerable amount of additional pro
cessing. Interpolation of original data does not add new information, but improves
the spectral behaviour of the data (resulting in less aliasing) [8J.

Another option is to apply supersampling during the compositing step by cast
ing additional rays into the dataset (more than one ray per output pixel); scene
pixels are determined by filtering the colours of different rays. This technique is
widespread in computer graphics (see [52]). Adaptive sampling techniques as dis
cussed in Section 4.1.1 can be easily extended to allow supersampling depending
on image complexity.

The use of adaptive (super) sampling during the image generation step has
been reported to give significant better image quality while keeping the additional
computational costs low [35]; note that supersampling only reduces aliasing effects
present in the output image and does not add new information.

The best way to enhance the intrinsic resolution of the output image of course
remains to improve the spectral characteristics of the original volume dataset by
refining the data acquisition methods.

4.2.3. Shadows

In real life, shadowing is an important cue to get insight in the structure of complex
3D objects. The addition of shadows therefore represents an important quality
improvement.

When ray casting algorithms are used, the introduction of shadows is possible
with a two-pass ray casting approach. During the first pass, ray casting is per
formed for each light source that radiates the volume data. Attenuation of light
strength along an illumination ray is very similar to accumulation of opacity along
a viewing ray, but the attenuation of the light with increasing distance to the light
source should also be considered. Local illumination strengths can be stored in
a 3D light buffer, after which, during the second ray casting pass, conventional
shading based on these values is performed.

Since movie sequences are· usually made with fixed light sources and a moving
observer, the 3D light strength buffer is computationally cheap but very memory
hungry. Examples of this technique are reported by Van der Voort [53] and Levoy
[54]. A qualitatively better, but far more time consuming technique would move
the object with respect to light sources, thereby providing more visual clues to
observers.

A complication with this technique is that surfaces in volumetric data have the
tendency to partially shadow themselves, introducing distracting aliasing effects.
Levoy [55] proposed a simple solution by translating the 3D light strength buffer
a few voxels away from the light source; this reduces distracting artifacts, but also
decreases shadowing accuracy within small objects.

A different a.pproach for providing shadows is the use of global illumination
models tha.t attempt to take into account the interchange of light between all sur-

www.manaraa.com

VISUALIZATION OF VOLUME1RlC MEDICAL IMAGE DATA 379

faces in the volume [56; 57]. Meinzer et a.l. [58] adopted a simplified implementation
of Kajiya's illumination model. Their approach is purely empirica.l, but they report
high-qua.lity images. Unfortunately, the excessive computationa.l requirements of
this method currently prevent its clinica.l application.

4.2.4. Stereo and perspective projection

A common enhancement for 3D display is the addition of stereoscopic viewing,
which provides additiona.l depth cues. Stereoscopy is customarily obta.ined by or
thographic rendition of two images' with a slightly different viewpoint. The a.ngle
between the two viewpoints determines the depth present in the stereo image. It
ha.s been proven difficult to estimate dista.nces in depth; van der Voort et a.l. [53] re
port that most of the users report difficulties in using such stereoscopic pa.irs. This
can be expla.ined by the unusua.l combination of orthographic projection (a.ssum
ing viewing at an infinite distance) and stereo (a.ssuming nearby viewing) giving
inconsistent depth cues. Visually rea.listic 3D ima.ges require perspective projection
[59]. .

With perspective projection, the ray density decrea.ses a.s one ·moves away from
the observer. Consequently, the effective number of samples a.long rays decrea.s
es and care must be taken to avoid undersampling of the 3D data. Besides the
undersampling problem, perspective projection does not facilitate commonly used
methods for speeding up the ray ca.sting step, which increa.ses the required com
putationa.l costs.

An apparent method for perspective projection is a preprocessing step that
resamples the input data using a perspective tra.nsform. This allows for the sub
sequent ray ca.sting step to use para.llel projection techniques [30]. The approach
is suitable for object order (forward mapping) a.lgorithms and provides correctly
sampled perspective images.

Westover [37] notes that perspective projection can be added to "splatting"
methods without excessive costs; his renderer ca.n dea.l with cha.nging sampling
rates of the input grid by appropriate resizing of the preca.lculated footprints.

The addition of perspective projection to backward mapping ray ca.sting tech
niques ha.s proven to be more difficult. An obvious approach is to choose high
sample rates that provide correct sampling at the "yon" (far away) side of the
volume. Unfortunately, this leads to a dramatic increa.se in the number of sampled
rays a.s well a.s the need for an additiona.l filtering step to correctly handle. the
supersampling at the "hither" side of the volume.

Levoy [60] proposes an a.lgorithm that facilitates perspective projection by using
3D mip maps (a three-dimensiona.l extension of the 2D mip map texture resam
pling method reported by Williams [61]). Preca.lculated colours and opacities are
stored at different levels of resolution; during the image-order ray ca.sting step,
undersampling is avoided by decrea.sing the input resolution of the data.set (by
choosing a mip map at a lower resolution level) where appropriate. Although ob-

www.manaraa.com

380 K. J. ZUIDERVELD AND M. A. VIERGEVER

jects at the yon side of the volume are rendered at a lower resolution, satisfying
results were reported.

Finally, a simple approach for perspective projection for backward mapping
methods was proposed in [62]. It uses a traditional ray casting step, but spawns ad
ditional rays when undersampling threatens to occur; results of adjacent spawned
rays are then merged in back-to-front order. This approach seems very suitable for
adaptive ray termination, although this has not been confirmed.

The majority of current implementations completely ignore perspective pro
jection, since it is costly and does not provide dramatic improvements in depth
perception when not combined with interactive stereo display. We expect that per
spective will get much more attention when hardware becomes available that is
capable of high speed visualizations.

4.2.5. Geometrically defined objects

Potential clinical applications of mixing geometric and volumetric data in a single
visualization are easy to find, especially in the field of radiation therapy where
superposition of radiation treatment beams over patient anatomy gives important
information on the .geometry of the treatment planning.

Since geometric and volumetric data have totally different spectral properties,
great care should be taken when mixing them. There are essentially two approach
es: combination of separately shaded surface and volume data and merging the
two datasets into one dataset with subsequent ray casting [63].

The first method employs a hybrid tracer: Rays are simultaneously cast through
the volumetric sample arrays and the polygonal dataset, after which the resulting
colour samples are composited together in depth-sorted order. In this technique,
a modified blending algorithm should be used since geometrically defined planes
usually have infinite thinness (or at least are significantly thinner than the voxel
size) [54]. Supersampling must also be performed to prevent aliasing along polygon
edges.

The second method first converts geometrical objects into a 3D volume dataset
by performing appropriate shading, filtering, and resampling. This transformation
is called 3D scan-conversion [64; 54]. The filtering step guarantees a band-limited
dataset, which avoids aliasing effects. The filtered dataset is then merged with the
original volume, after which standard visualization techniques are applied on the
merged dataset.

The best image quality is delivered by the hybrid ray tracer, since the filtering
step associated with 3D scan conversion results in blurred polygonal edges. The
hybrid approach is also suited for animation. With a constant viewpoint, we can
separate the static volume data (e.g., storing the calculated opacities and colours in
a depth-buffer) from the dynamic geometrical primitives representing information
as iso-dose contours or an "electronic scalpel". Combination of both data can then
be done by Z-merging algorithms [63].

www.manaraa.com

VISUALIZATION OF VOLUMETRIC MEDICAL IMAGE DATA 381

The addition of geometrically defined objects often leads to better insight in the
3D image structure, which suggest that geometric primitives may also be useful as
diagnostic tool in the study of volumetric datasets.

5. Trends

Volume visualization techniques imply processing of an enormous amount of data,
which prevents contemporary workstations from generating high· quality 3D images
in a truly interactive manner. This partially explains the fact, that in spite of great
interest from the medical community, routine use of volume visualization has not
been established yet.

It is likely that interactive visualization of medical datasets will become reality
in this decade. Special purpose architectures as Pixel-Planes 5 are currently pro
viding near interactive speeds [65; 43). Since the speed of computer hardware tends
to double each year, adequate computing power should be available before the end
of the century. As the size of 3D datasets poses a huge data transfer problem,
only parallel processing-. will facilitate real- time interactive manipulation. Suitable
algorithms for data caching and load balancing on parallel architectures have to
be developed.

An important field is the design and implementation of good user interfaces for
volume visualization. The window and mouse style of interaction, that has become
popular in nearly all low- and high-end computer platforms, is also being adopted
by manufacturers of medical imaging equipment. In the next years we expect
a gradual change-over from primitive "keyboard and pushbutton" interfaces to
graphical user interfaces (G U I's) that are adopted to the specific requirements of
its medical users.

The standard window and mouse style interfaces are less suited for direct 3D
interaction with volume data. Visualization techniques and hardware as well as
suitable input and output devices should be developed that support such inter
action. Examples of potential applications are interactive radiotherapy treatment
planning, rehearsal of surgical procedures, and real-time volume imaging. The de
velopment of adequate 3D user interfaces and fast parallel graphics hardware are
important topics in the "Virtual Reality" wave that has inundated the graphics
community. In spite of the rapid advancements in this field, it will take several years
before the techniques become both usable and affordable for clinical applications.

Shadowing and perspective are important cues to get an insight into the struc
ture of complex 3D objects. Facilitated by the increasing speed of computer hard
ware, we expect the development of various algorithms that provide these possibil
ities and are tuned towards specific applications and/or special purpose computer
architectures.

Problems related to registration and segmentation are not specific for the med
ical field; numerous research groups working on image processing are addressing
related problems. Unfortunately, progress on automatic 3D object recognition and

www.manaraa.com

382 K. J. ZUIDERVELD AND M. A. VIERGEVER

tissue classification is relatively slow and much work still has to be done.
Even if perfectly registered and segmented datasets are available, their 3D dis

play would still pose substantial problems. There is a great need for good strategies
that display the essential aspects of different datasets in a rendered image (data
fusion). Some initial results that combine anatomical and functional information
obtained from different modalities can be found in [66] and [67].

The progress in rendering techniques, in software development, and in com
puter hardware guarantees that volume visualization will stay a key development
area in the 1990's. Perhaps the biggest challenge in this field is the development
of clinically applicable strategies for integrated registration, segmentation, manip
ulation and visualization of multimodality datasets. Although this goal still seems
far away, its achievement will be benificial to many areas of medicine.

Acknowledgements

This research was partially supported by the Dutch Ministry of Economic Af
fairs (SPIN grant (VS-3DM) 50249/89-01) and by the industrial companies Agfa
Gevaert, KEMA and Philips Medical Systems.

References

1. F. Zonneveld, S. Lobregt, J. vander Meulen, a.nd J. Vaandrager, "Three-dimensional imaging
in craniofacial surgery," World J. Surg, vol. 13, pp. 328-342, 1989.

2. E. Fishman, D. Ney, and D. Magid, Three.Dimen,ional Imaging: Clinical Application, in
Orthopedics, pp. 425-440. Vol. 60 of Hahne et al. (68], 1990,

3. D. Ney, E. Fishman, and D. Magid, "Three-dimensional ima.ging of computed tomography:
Techniques a.nd a.pplications," in VBC90 [69}, pp. 498-506.

4. D. Ney a.nd E. Fishma.n, "Editing tools for 3d medical imaging," IEEE Computer Graphics
and Applications, vol. 11, pp. 63-71, November 1991.

5. S. Ra.ya a.nd J. Updupa, "Shape-based interpolation of multidimensional objects," IEEE
Transactions on Medical Imaging, vol. 9, pp, 32-42, Ma.rch 1990.

6. C. Liang, W. Lin, and C. Chen, "Intensity interpola.tion from serial cross-sections," in SPIE
Vol. 109!J Medical Imaging III: Image Processing, pp. 60-66, 1989.

7. J. Parker, R. Kenyon, a.nd D. Troxel, "Comparison of interpola.ting methods for image re
sampling," IEEE Transactions on Medical Imaging, vol. MI-2, pp. 31-39, March 1983.

8. M. Levoy, "Rendering of surfaces from volume data," IEEE Computer Graphics and Appli
cations, vol. 8, no. 3, pp, 28-37, 1988.

9. G. Frieder, D. Gordon, a.nd R. Reynolds, "Back to front display of voxel-based objects,"
IEEE Computer Graphics and Applications, vol. 5, pp, 52-59, January 1985.

10. D. Cohen, A. Kaufman, R. Bakalash, a.nd S. Bergman, "Real time discrete shading," The
Visual Computer, vol. 6, pp. 16-27, February 1990.

11. A. Kaufman, R. Bakalash, D, Cohen, a.nd R. Yagel, "A survey of architectures for volume
rendering," IEEE Engineering in Medicine and Biology, vol. 9, pp. 18-23, December 1990.

12. K. Hahne, M. Bomans, A. Pommert, M. Riemer, C. Schiers, U. Tiede, a.nd G. Wiebecke, "3d
visualization of tomographic volume data using the generalized voxel model," The Visual
Computer, vol. 6, pp, 2S-36, February 1990.

13. A. Pommert, U. Tiede, G. Wiebecke, and K. Hohne, "Surface shading in tomogra.phic volume
visualiza.tion: A comparative study," in VBC90 [69], pp. 19-26.

14. B. ter Haar Romeny, 1. Florack, J. Koenderink, and M. Viergever, "Space spa.ce: Its na.tural
operators a.nd differential invariants," in Colchester and Hawkes [70), pp, 239-255.

www.manaraa.com

VISUALIZATION OF VOLUMETRIC MEDICAL IMAGE DATA 383

15. 8. Phong, "Illumination for computer generated pictures," Communicatiom of the ACM,
vol. 18, no. 6, pp. 311-317, 1975.

16. J. Coatrieux and C. Barillot, A survey of 3D Dillplay Techniquell to Render Medical Data,
pp. 175-196. Vol. 60 of Hohne et al. [68], 1990.

17. A. Kaufman, Volume rendering. IEEE Computer Society Press, 1990.
18. R. Robb and D. Hanson, "Analyze: A software system for biomedical image analysis," in

VBC90 [69J, pp. 507-518.
19. H. Fuchs, Z. Kedem, and S. Uselton, "Optimal surface reconstruction from planar contours,"

Communicatiom of the ACM, vol. 20, pp. 693-702, October 1977.
20. H. Christiansen and T. Sederberg, "Conversion of complex contour line definitions into

polygonal element mosaics," Computer Graphics, vol. 12, pp. 187-192, July 1978. Proc.
Siggraph.

21. Y. Shinagawa and T. Kunii, "Constructing a reeb graph automatically from cross sections,"
IEEE Computer Graphics and Application.!, vol. 11, pp. 44-52, November 1991.

22. W. Lorensen and H. Cline, "Marching cubes: A high resolution 3d surface construction
algorithm: Computer Graphics, vol. 21, pp. 163-169, July 1987. Proc. Siggraph.

23. A. Wallin, "Constructing isosurfaces from ct data," IEEE Computer Graphic.! and Applica
tions, vol. 11, pp. 28-33, November 1991.

24. H. Cline, W. Lorensen, S. Ludke, C. Crawford, and B. Teeter, "Two algorithms for the three
dimensional reconstruction of tomograms," Medical PhYlliclI, vol. 15, pp. 320-327, May/June
1988.

25. W. Lorensen and H. Cline, "Volume modelling,' in Volume Visualization Algorithm .. and
Architecture8, pp. 45-65, 1989.

26. H. Cline, W. Lorensen, S. Souza, R. Kikinis, G. Gerig, and T. Kennedy, "3d surface rendered
mr images of the brain and its vasculature," joumal of Computer A811i8ted Tomography,
vol. 15, no. 2, pp. 344-351, 1991.

27. J. Udupa and G. Herman, "Volume rendering versus surface rendering," Communicatiom
of the A CM, vol. 32, pp. 1364-1366, 1989.

28. G. Frieder, G. Herman, C. Meyer, and J. Udupa, "Large software problems for small com
puters: An example from medical imaging," IEEE Software, vol. 2, pp. 37-47, September
1985.

29. K. Hohne, M. Bomans, A. Pommert, and U. Tiede, "Voxel-based volume visualization tech
niques," in Volume Visualization Algorithm .. and Architecture.!, pp. 66-83, 1989.

30. R. Drebin, L. Carpenter, and P. Hanrahan, "Volume rendering," Computer Graphic.!, vol. 22,
no. 4, pp. 65-14, 1988. Proc. Siggraph.

31. T. Porter and T. Duff, "Compositing digital images: Computer GraphiclI, vol. 18, no. 3,
pp. 253-259, 1984. Proc. Siggraph.

32. D. Ney, E. Fishman, D. Magid, and R. Drebin, "Volumetric rendering of computed tomog
raphy data: Principles and techniques,' IEEE Computer Graphics and Applicatiom, vol. 9,
no. 2, pp. 24-32, 1990.

33. K. Hohne, M. 8omans, A. Pommert, M. lliemer, U. Tiede, and G. Wiebecke, Rendering
Tomographic Volume Data: Adequocy of Methods for Different Modalities and Organs, p
p. 197-216. Vol. 60 of Hohne et 01. [68], 1990.

34. A. Levinthal and T. Porter, "Chap - a simd graphics processor," Computer GraphiclI,
vol. 18, pp. 77-82, July 1984. Proc. Siggraph.

35. M. Levoy, "Volume rendering by adaptive refinement," The Visual Computer, vol. 6, pp. 2-1,
February 1990.

36. M. Levoy, "Efficient ray tracing of volume data," ACM Transactions on Graphics, vol. 9,
pp. 245-261, July 1990.

37. L. Westover, "Footprint evaluation for volume rendering," Computer GraphiclI, vol. 24, p
p. 367-376, August 1990. Proc. Siggraph.

38. E. Fishman, R. Drebin, D. Magid, W. Scott, D. Ney, A. Brooker, L. Riley, A. Ville,
E. Zerhouni, and S. Siegelman, "Volumetric rendering techniques: Applications for three
dimensional imaging of the hip," Radiology, vol. 163, no. 6, pp. 737-138, 1981.

39. J. Siebert, T. Rosenbaum, and J. Pernicone, "Automated segmentation and presentation

www.manaraa.com

384 K. J. ZUIDERVELD AND M. A. VIERGEVER

algorithms for 3d mr angiography." SMRM Poster 758, 1991.
40. F. Hottier and A. Billon, 3D Echography; Statu", and Perspective, pp. 21-41. Vol. 60 of

Hohne et al. [68J, 1990.
41. J. Udupa and H. Hung, "Surface versus volume rendering: A comparative assessment," in

VBC90 [69J, pp. 83-91.
42. Kalender, Seibler, Klotz, and Vork, "Single-breathold spiral volumetric computed tomog

raphy by continuous patient tra,nslation and scanner rotation," in Abstract! 75th annual
meeting RSNA, (Chicago), p. paper No. 1370, 1989.

43. R. Ohbuchi and H. Fuchs, "Incremental volume rendering algorithm for interactive 3d ul
trasound imaging,· in Colchester and Hawkes [70J, pp. 486-450.

44. J. Wilhelms and A. Van Gelder, "Octrees for faster isosurface generation," Computer Graph
ic"" vol. 25, pp. 57-62, November 1990. SanDiego Workshop on Volume Visualization.

45. D. Laur and P. Hanrahan, "Hierarchical splatting: A progressive refinement algorithm for
volume rendering," Computer Graphics, vol. 25, no. 4, pp. 285-288, 1991. Proc. Siggraph.

46. J. Udupa and D. Odhner, "Fast visualization, manipulation, and analysis of binary volu
metric objects," IEEE Computer Graphics and Applications, vol. 11, pp. 53-62, November
1991.

47. T. Foley, D. Lane, and G. Nielson, "Toward animating ray traced volume visualization," The
Journal oj Vi!ualization and Computer Animation, vol. 1, pp. 2-8, February 1990.

48. B. Gudmundsson and M. Randen, "Incremental generation of projections of ct-volumes," in
VBC90 [69J, pp. 27-34.

49. A. Pommert, U. Tiede; G. Wiebecke, and K. Hohne, Image Quality in Voxel-Based Surjace
Shading, pp. 737-741. Computer Assisted Radiology, Berlin: Springer-Verlag, 1989.

50. A. Pommert, W. Holtje, N. Holzknechi, U. Tiede, and K. Hohne, "Accuracy of images and
measurements in 3d bone imaging,· in Lemke et al. [71J, pp. 209-215.

51. M. Levoy, H. Fuchs, S. Pizer, J. Rosenman, E. Chaney, G. Sherouse, V. Interrante, and
J. Kiel, "Volume rendering in radiation treatment planning," in VBC90 [69J, pp. 4-10.

52. J. Foley, A. van Dam, S. Feiner, and J. Hughes, Computer Graphics - Principles and Practice.
Addison- Wesley, second ed., 1990.

53. H. van der Voort, G. Brakenhoff, G. Janssen, J. Valkenburg, and N. Nanninga, "Confocal
scanning fluorescence and reflection microscopy: Measurements of the 3-d image formation
and application in biology," in Proceeding! SPIE vol. 808, pp. 138-143, 1987.

54. M. Levoy, "A hybrid ray tracer for rendering polygon and volume data," IEEE Computer
Graphic", and Application!, vol. 10, pp. 33-40, March 1990.

55. M. Levoy, Display oj Surjace! jrom Volume Data. PhD thesis, University of North Carolina,
Chapel Hill, May 1989.

56. J. Kajiya, "The rendering equation," Computer Graphics, vol. 20, pp. 143-149, August 1986.
Proc. Siggraph.

57. P. Heckbert, "Adaptive radiosity textures for bidirectional ray tracing," Computer Graphics,
vol. 24, pp. 145-154, August 1990. Proc. Siggraph.

58. H. Meinzer, K. Meetz, D. Scheppelmann, U. Engelmann, and H. Baur, "The heidelberg ray
tracing model," IEEE Computer Graphic$ and Application$, vol. 11, pp. 34-43, November
1991.

59. M. Hagen, "How to make a visually realistic 3d display," Computer Graphics, vol. 25, pp. 76-
81, April 1991.

60. M. Levoy, "Gaze-directed volume rendering," Computer Graphics, vol. 24, no. 2, pp. 217-223,
1990.

61. L. Williams, "Pyramidal parametrics," Computer Graphics, vol. 17, pp. 1-11, July 1984.
Proc. Siggraph.

62. K. Novins, F. Sillion, and D. Greenberg, "An efficient method for volume rendering using
perspective projection," Computer Graphics, vol. 24, no. 5, pp. 95-102, 1990.

63. A. Kaufman, R. Yagel, and D. Cohen, Intermixing Surjace and Volume Rendering, pp. 217-
228. Vol. 60 of Hohne et al. [68], 1990.

64. A. Kaufman, "Efficient algorithms for 3d scan-con version of parametric curves, surfaces and
volumes," Computer Graphics, vol. 21, pp. 171-179, July 1987. Proc. Siggraph.

www.manaraa.com

VISUALIZATION OF VOLUMETRIC MEDICAL IMAGE DATA 385

65. H. Fuchs, M. Levoy, and S. Pizer, "Interactive visualization of 3D medical data," IEEE
Computer, pp. 46-51, August 1989.

66. X. Hu, K. Tan, D. Levin, C. Pelizari, and G. Chen, A Volume-Rendering Technique for
Integmted Three-Dimen.sional Di.splay of MR and PET Data, pp. 379-398. Vol. 60 of Hahne
et al. [68], 1990.

67. P. van den Elsen and M. Viergever, "Fusion of electromagnetic source data and tomographic
image data," in Lemke et al. [71]. pp. 240-246.

68. K. Hahne, H. Fuchs, and S. Pizer, eds., 3D Imaging In Medicine, vol. 60 of series F: Computer
and Sy.stem Sciences. Springer-Verlag, 1990.

69. IEEE Computer Science Society, First Conference on Visualization in Biomedical Comput
ing, (Atlanta.), IEEE Computer Society Press, 1990.

70. A. Colchester and D. Hawkes, eds., Information Processing in Medical Imaging, Springer
Verlag, July 1991.

71. H. Lemke, M. Rhodes, C. Jaffe, and R. Felix, eds., Computer Assisted Radiology, Springer
Verla.g, 1991.

www.manaraa.com

SCIENTIFIC VISUALIZATION

JJ. VANWIJK
Netherlands Energy Research Foundation ECN.

P.O. Box 1.1755 ZG Petten. The Netherlands

Abstract. The aim of scientific visualization is to get insight in the results of simulations and
measurements with interactive computer graphics. An overview of the different aspects of visualiza
tion is provided on the basis of the visualization-pipeline. The division of the visualization process
in different steps, the interaction with the user, the use of hardware, and the different solutions
for software are discussed. One of the greatest challenges in visualization is the visualization of
three-dimensional flow. Several new techniques for this were developed at the ECN Visualization
Centre.

1. Introduction

The rapid development of computer hardware and software has promoted the use
of simulation as a tool for analysis and evaluation. The number of applications, the
size as well as the complexity of simulations have grown exponentially in the last
decades. Modem computer hardware has provided a solution for the generation
of large amounts of data, but also given rise to a new major problem: the human
interpretation of these very large data-sets.

An important way for researchers to get insight in the result of large scale
simulations is via the use of computer generated images. The bandwidth of the
human visual system matches the size of the data-sets. Further, computer graphics
hardware has developed very rapidly: from plotters in the sixties, via line drawing
displays in the seventies, to nowadays 3-D graphics workstations. With these
workstations shaded images of complex models can be generated in fractions of
seconds.

These developments have led to a new sub-discipline in computer graphics:
scientific visualization. This term was first used in 1987 in an influential report of
a committee of the U.S. National Science Foundation (McCormick et al., 1987).
The report states that: ''The goal of visualization is to leverage existing scientific
methods by providing new scientific insight through visual methods." The keyword
here is insight, insight of the researcher in his simulation. If the researcher has
gained this insight, he also wants to communicate this to others. Presentation is
therefore another, partly overlapping, goal of visualization.

In this article first a global overview is given of the current state of visualization.
To this end the visualization process is broken down into a number of steps: the
visualization pipeline. By means of this concept several aspects, such as user
interaction, the use of hardware, and the solutions for software are discussed.

The ECN Visualization Centre is involved in the development of practical
solutions for visualization problems, and in research to explore and shift the limits

387

P. Dewilde and J. Vandewalle (eds.). Computer Systems and Software Engineering. 387-396.
© 1992 Kluwer Academic Publishers.

www.manaraa.com

388 J. J. VAN WIJK

of visualization. One of most challenging application domains for visualization is
Computational Auid Dynamics. Several new techniques for the visualization of
flow were developed at the ECN Visualization Centre.

2. Visualization pipeline

The visualization process is best described as a sequence of processing steps: the
original data are sequentially processed in a pipeline, until images result (Upson et
al., 1989). The typical steps in this process are:

data generation: simulations or measurements produce data;
data enrichment and enhancement: the data are selected, filtered, smoothed,
interpolated, transformed, combined, etc.;
visualization mapping: the data are mapped onto visual primitives (e.g.
polygons, lines) and their optical properties (colour, reflectivity) are derived;
rendering: the visual primitives are displayed on the screen after performing
viewing transformations, hidden surface removal, shading calculations, and
scan-conversion.

For the last step standard computer graphics techniques can be used. However,
the process involves more. Other disciplines that play an important role are
data base management, user interface design, and network technology. Further,
the problems and conventions differ for each application domain. The input of
experts from the application domain is therefore indispensable for a successful
development of visualization solutions.

By means of this visualization pipeline we will consider a number of aspects of
scientific visualization: the role of the user, the use of hardware, and solutions for
software.

3. Interaction

The concept of a pipeline suggests that the display of scientific data is a one
off event. Obviously, in practice it is part of a cycle, as shown in fig. 1. The
interpretation of an image will often induce that the researcher wants a different
view on his data that provides more information. The user can control the
visualization for each step of the pipeline. The most simple operation is to select a
different view or a different position of a light source. Each aspect of the data can
be visualized in different ways: a chemical bond can be shown as a line, a cylinder,
or as a iso-potential surface; colour scales can be changed, etc ..

The selection of the data to be visualized varies strongly with the phase of the
analysis of the data. Usually one starts with a global overview, next interesting
details are isolated and studied further. On the highest level the researcher
can directly vary parameters that influence his simulation. This is known as
computational steering, and cannot be realized yet for complex 3-D simulations.
But we can expect that in the near future a designer changes the construction of

www.manaraa.com

SCIENTIFIC VISUALIZATION 389

Simulation computational steering

data
r

Data selection. scaling • ...
Enrichment

User

processed data

Visualization visualization method.
Mapping colour scale • ...

graphical

primitives

Rendering view. light sources • ... -

image

Fig. 1. User and visualization pipeline

his product interactively, while simultaneously the consequences for the occurring
stresses are shown.

4. Hardware Allocation

A typical configuration for performing simulations is a combination of a super
computer and a graphics workstation, connected by a network. It depends on the
application how the visualization pipeline is mapped onto the hardware (fig. 2).
If the simulation is not too demanding, the whole process, from calculation up to
display, can be done on a workstation. A supercomputer can be used in one of the
following ways:

simulation: all results are sent to the workstation;
simulation and data enrichment: processed data are transferred;
simulation, data enrichment, and visualization mapping: graphics primitives
are transferred;

www.manaraa.com

390 J. J. VAN WIJK

Simulation

Data
Enrichment

r
Visualization

Mapping

Rendering

Network
Supercomputer Workstation

Fig. 2. Hardware and visualization pipeline

simulation, data enrichment, visualization mapping, and rendering: images
are transferred.

An advantage of the first option is that all data can be processed locally on
the workstation. However, if the capacity of the worlcstation falls short, a better
alternative is to pre-process the data near the source (option 2). The third option
is often used: the X-Windows protocol is a flexible and portable solution for the
transport of graphical information across networks. An important limitation is that
the graphics primitives of X-Windows are two-dimensional, which inhibits the use
of the 3D facilities of modem graphics worlcstations. PEX is a 3D-extension of
X-Windows that allows a better use of the equipment.

If the demands on the image quality are very high, then the calculation of the
images is a CPU-intensive process on its own. A natural solution is then to use the

www.manaraa.com

SCIENTIFIC VISUALIZA nON 391

supercomputer for the full visualization process.
The amounts of data that are sent over the network vary strongly, dependent

on the application and the allocation of tasks over the hardware. It is therefore
possible that the network becomes the limiting factor for the cycle-time. This is
another reason to consider the use of hardware carefully.

s. Software

A number of solutions is possible for the use of software for scientific visualization
(fig. 3). On the lowest level are general graphics standards, ISO or de facto.
Examples are GKS, PHIGS, and the Graphics Library (GL) of Silicon Graphics.
The functional level of those standards is that of the last step of the visualization
pipeline: the conversion of graphics primitives to images. If such a standard is used
as a starting point, then custom programming is required for the remainder of the
visualization pipeline. The advantage is that the visualization application can be
optimized according to one's own wishes and insights. For example, the features
of the hardware can be exploited, and the user interface can be tailored to specific
wishes. The disadvantages are that the development of software is still costly, and
the development of interactive graphics applications requires expertise. In many
cases it is therefore advisable to use a ready-made solution.

The next step is the use of a library for scientific graphics, such as UNIRAS
or DISSPLA. Such libraries offer a large number of options for drawing graphs,
functions of two variables, etc., with many possibilities to adjust graphical features,
such as the axes or the colour scales used.

The use of libraries requires an application program that calls the subroutines
of the libraries. A different solution, rapidly gaining in popularity, is the use of
end-user packages. Here the user enters a data-set, and can specify with menus,
sliders, buttons etc. how these data must be visualized. Examples of such packages
are Unigraph 2000 of UNIRAS, PV-Wave, and the Data Visualizer of Wavefront
Technologies. The use of such packages is easy to learn, and gives quick results.
A disadvantage is that the user is limited to the functionality that has been built in
by the manufacturer. This will be no problem however in many situations.

In the ideal situation the researcher can use an environment for visualization
that handles the complete pipeline, and which is both flexible and easy to use.
The so-called application builders aim to provide a solution for this. Examples are
AVS, apE and Explorer (Silicon Graphics). Here the visualization process is split
into modules. Each module has a limited functionality and a small number of input
and output channels. Typical modules are modules for reading data, calculation of
iso-surfaces, the selection of colour scales, and for rendering. The (advanced) user
can add modules, so that the functionality of such a system has no limits.

The modules are connected by visual programming. Each module is presented
on the screen as a window, with buttons and other controls to adjust control
parameters. The user can select with the mouse how the modules are connected.

www.manaraa.com

392 1.1. VANWUK

Simulation

Data
Enrichment

1

Visualization

Mapping ~
}

Rendering

o~

~ :§
~ .:

13 ~ i
.:

.; '" ~

~
Cl G) ri .9

~ f o!:2 '3 a-Q" ::. .0

~ g p.,

~ e ~ '" ~ ~ °B j ~
~ ;.::l

N ~ 8: rn ;:) <

Fig. 3. Software and visualization pipeline

The resulting network of modules is a visualization application. hence the tenn
application builders.

The concept of application builders is very promising: flexible, expandable.
and relatively easy to use. They have appeared only recently. so the future has to
tell if these promises will be fulfilled in practice.

6. ECN Visualization Centre

The preceding discussion shows that a single solution for visualization, optimal in
all situations, does not exist. Probably it will never arrive. because the spectrum
of applications is too wide: varying from a simple X-Y plot to the visualization
of complex 3-D time-dependent fluid dynamics calculations. Therefore, several
solutions are available at the Netherlands Energy Research Foundation EeN. For a
large number of applications libraries and end-user packages for scientific graphics
are sufficient. However, the number of applications that generate complex data
sets, or with high demands on quality, speed, and ease of use, is growing fast.

www.manaraa.com

SCIENTIFIC VISUALIZATION 393

Fig. 4. Visualization finite elements

Fig. 5. Visualization ship dynamics

www.manaraa.com

394 J. J. VAN WIJK

In 1991 the ECN Visualization Centre was established to supply an answer to this
demand. In this context a high quality 3-D graphics wolkstation (Silicon Graphics
VGX) and the Data Visualizer of Wavefront Technologies were purchased.

In some situations, it is worth while to develop a visualization package for
one application. The reasons for this differ. Some users wolk very intensively
with always the same type of d&ta. A y::malization package with an optimized
user-interface and functionality leads then to a significant gain of time. In other
situations the amounts of data are so large (initially or after the visualization
mapping) that everything has to be done to use the hardware optimally. Another
important reason to develop a package is simply that no ready-to-use applications
are available on the matket.

Fig. 4 and 5 show two examples of visualization packages developed at ECN.
In fig. 4 nine coils of the Next European Torus fusion reactor are shown. The
calculation of the stresses and distortions was done with ANSYS by C.T.J. Jong,
ECN - Applied Mechanics. The image was made with ELVIS, a package for the
visualization of the results of finite elements calculation. With ELVIS the stresses,
temperatures, and distortions can be shown dynamically.

Fig. 5 shows an application for the visualization of the dynamics of ships,
developed for MARIN (Maritime Research Institute Netherlands). The input of
the package are for each ship spectral transfer functions for the six degrees of
freedom. These are calculated by R. Dallinga and R. Huijsmans (MARIN). The
waves of the sea surface are also described spectrally by wave models. The user
can establish parameters such as the wind force and view direction interactively,
so that he can get a good impression of the dynamical behaviour of the ship in the
spatial domain.

7. Flow Visualization

The main topic for research of the ECN Visualization Centre is the visualization of
flow. This is one of the greatest challenges in the area of visualizations. The main
reasons for this are:

the type of data: the results of a simulation are a combination of vector and
scalar fields;
the large amounts of data;
the complexity of the structures that result from for instance the modelling of
turbulence.

The research has led to several new techniques for the presentation of flow. Fig.
6 shows a visualization of a flow field with surface-particles. This concept was
developed by J. Stolk as part of his Master's thesis project, with F.H. Post (Delft
University of Technology) and the author as his supervisors (Stolk and Van Wijk,
1991). The use of particles is a well-known technique for flow visualization. The
new aspect of surface-particles is that each particle is considered as a small facet.

www.manaraa.com

SCIENTIFIC VISUALIZATION 395

Fig. 6. Visualization flow with surface particles

Fig. 7. Visualization flow with texture

www.manaraa.com

396 1.1. VANWUK

It does not only have a position, but also a direction. This direction, or, the nonnal
on the surface, is used to calculate the shading of the particle.

Sources are used for the creation of particles. The flow can be visualized in
many ways by variation of the properties of this source. A circle-shaped source
that continuously releases particles leads to a stream tube, a spherical source that
releases panicles at regular intervals gives a series of spheres, which diston under
influence of the flow. Fig. 6 shows a number of possibilities.

Another result is shown in fig. 7. Here texture was used for the display of flow
over a surface. This texture, spot noise, is generated by addition of a large number
of randomly placed spots with a random intensity (Van Wijk, 1991). If the number
of spots is large, then the individual spots can no longer be distinguished, and only
texture is perceived. The data can be expressed by variation of the propenies of
the spot as a function of the data. For fig. 7 an ellipse was used, with the long
axis in the direction of the velocity, and the ratio between the lengths of the axes
proponional to the magnitude of the velocity.

8. Conclusion

Visualization is an imponant, if not indispensable tool for the analysis of sim
ulations. An overview is given of the different aspects of visualization. Funher,
examples of applications and research are presented.

The current developments with respect to both visualization hardware and
software are rapid. We can therefore expect that the role of visualization in
research and development will become more and more important.

References

McCormick, B.W., T.A. DeFanti, and M.D. Brown (eds.): 1987, 'Visualization in Scientific Com
puting', Computer Graphics 21 (6),

Upson, C. et a1.: 1989, 'The Application Visualization System: a Computational Environment for
Scientific Visualization',lEEE Computer Graphics and Applications 21 (6), 30-42

Stolk, J. and J J. van Wijk: 1991, 'Surface-Particles for 3D Flow Visualization', Proceedings Second
Eurographics Workshop on VISualization in Scientific Computing. Delft, The Netherlands,

Wijk, U. van: 1991, 'Spot Noise - Texture Synthesis for Data Visualization', Computer Graphics
25 (4), 309-318

www.manaraa.com

PICTURE ARCHIVING AND COMMUNICATION SYSTEMS
A SERVICE

R.~A1THEUS

Free University Hospital Brussels (V.U B.)
Department of Radiology

Laarbeeklaan 101, 1090 Brussels
Belgium

Abstract. Medical imaging is an e'\'olving discipline, after the discovery of Roentgen 100
years ago, the introduction of the computer totally changed the field. Medicine in general is
much more specialized than before and computerization is a must. First automatization in the
administrative sector of the clinic took place, next computers where introduced in medical
equipment and now communication is playing a key role; this results in the need for dedicated
services.

Images are generated, manipulated and communicated throughout the total hospital and even
outside. The amount of information to deal with is 5000 times the magnitude of other clinical
data. This results in the set-up of a complex heterogeneous environment as a service to provide
images and other data on the locations where needed.

This chapter will give an idea of the evolution of the heath care model with the introduction
and the needs of informatics. Communication will be described as the key component in this tele
medicine revolution. A Picture Archiving and Communication System (PACS) service is
described, given a lot of attention to the relations and impact of the Information Technology and
Telecommunication (IT&T) industry on this complex system.

1. Introduction

We are speaking about Picture Archiving and Communication Systems
(PACS) since 1982. First technical reasons, afterwards, integration and
adaptation problems resulted in a difficult introduction of PACS.

In the beginning it was as a filmless radiology department, and now seems
to result in a service for image management and communication on a
departmental, hospital or even interhospitallevel. The health care model is
complex and diverse. Medicine became more specialized and grew needs for
communication of multi-media information. Technology movements will play
a key role in the expansion and use of the application. Developments coming
from the IT&T market as ATM, CD-I, will contribute to the next generations
of PACS infrastructure.

These Image Management and Communication Systems infrastructures will
be decentralized, heterogeneous, integrated with other departmental systems,
open an phase upgradable.

397

P. Dewilde and 1. Vandewalle (eds.). Computer Systems and Software Engineering. 397--426.
© 1992 Kluwer Academic Publishers.

www.manaraa.com

398

2. Health Care System

2.1 Health Care Information Model

R.MATIHEUS

A health care information model focusing on imaging can be defined as
consisting out of three levels as indicated in figure 1. Initiator level: requested
phase, home preparation; the referring specialist ask for a dedicated
examination and result, he asked for a service. The second level consists out
of the service level, like radiology, pathology, lab ... These have to perform a
task and have to use resources like information: reports, old examinations,
new examinations and equipment

Until now a lot of R&D was done regarding the communication between
and in these two lowest levels. The initials want to use a lot of services
together, to match results for better diagnosis and treatment.

The communication problem is becoming complex and involves the need
for multi-media, but until this is solved PACS will only have a limited value.

Ref. Specialist

h:}}(/t] Departemental K1N~M~il Hospital Integration
Fig.1. Information flow in the health care system. Referring specialist asks for a specific
service, which will be preformed by the service provider using resources. Information coming
from different service providers can be needed to preform a diagnosis. not necessary in the same
hospital. Until know informatization on the departmental level is taking place, but hospital
integration, by means of communication should be stressed.

2.2 Health care information flow
Medicine, and specifically Primary Health Care, have to respond to the
changing patterns of population, disease and new treatments, to the demands
of medical ethics and the law, and the economic pressures and expectations.

It is essential that a new application of technology either improves the
quality of health care or increases the efficiency of providing care, preferably
both. If it is to achieve successful implementation, it is necessary that it is
socially acceptable and economically justifiable. Without these characteristics
it will not be marketable and will not improve the competitivity of the
producing industry. Subsequent exploitation of the investment requires the

www.manaraa.com

PICTURE ARCHIVING AND COMMUNICATION SYSTEMS 399

assurance of a long-term market, and increasingly an international market, to
achieve efficient levels of production and marketing. While it is generally
accepted that information and telecommunications technologies offer new
possibilities in the provision, management and planning of medicine and
health care, developments in information have almost inevitably highlighted
the importance of the protection of the individual in terms of privacy and
confidentiality. Privacy, in a health information context, means the right of
the patient to decide who has access to information about him and the
protection against the misuse or lHljustified publication of that information.

In seeking solutions to the challenges which face us, we can make use of
information and communication technology in a very productive way, but will
depend on developing systems and the necessary software to support them, as
well as taking advantage of the rapid developments in hardware. There has
been an increase in the need for communication between hospitals and general
practitioners as the pattern of health care has changed with the reduction in the
number of hospital beds available and reduction in length of stay in hospital,
but increase in the rate of admission to hospital.

Medical Informatics has been generated by two rapidly evolving
disciplines, medicine and informatics, and by the need for communication.

Since the introduction of micro-electronics, medicine has known an
unprecedented evolution. Informatics is made up of different layers, i.e.
software and hardware, which do not evolve in a co-ordinated manner. The
development of PA CS has been significant in the past decade. U ntiI sometime
ago, the aim of PACS had been to manage medical images efficiently. But
recently, as the technology evolved, there have been desires for adding new
dimensions to the system, as for example coupling it with the Hospital
Information System (HIS) and/or Radiology Information System (RIS),
which is what some authors call "Hybrid PACS".

2.3 Complexity of the health care system.
A health care system, like any form of social organization, reflects the
historical, cultural, and political as well as economic context within which its
develops.

- the character and modes of the population
- the historical process of evolution
- the past and present government structure
- the central components of the national economy
- the source of fmancing
- the structure of medical education
- the strength of personnel unions and professional associations

Due to this, medical informatics is quite complex and applications need to be
carefully mapped to a certain health care system. Terminology and scenarios
understanding and definition are crucial to compare, integrate and harmonize
the informatization of a health care system.

www.manaraa.com

400 R.MATIHEUS

2.4 Scenarios
Considering the vastness and complexity of the health care environment, the
medical information exchanges can only be defined in an abstract way.

One of the most important difficulties in medical informatics is the
abstraction of the health-care environment. If we want to develop a generic
model for the radiology department, with as target to build a PACS service,
the first should be requirement specifications. The problems arise already at
this first step. Terminology and other misconceptions between the to
disciplines: medicine and engineering, result in quite unuseful specifications.
One of the major problems is the level of abstraction and a clear understanding
of each item in the requirement process. As a useful way to avoid this I
would suggest the scenario description. Based on it, a common level of
abstraction is defined and more basic elements can be described in the same
way. An medical examination in Belgium, for example differs from an
examination in France. The way medicine works is quite different, e.g. how
is it organized, how is the equipment paid, etc ... The only common goal is to
make the patient better. Scenarios will help modelling, self education and
bring understanding of the components for mutual work on the on the
requirements, and their priorities.

A scenarios can be very general like sent image examination for diagnosis
to other specialist; tele-radiology or quite detail sent selected image and related
data by means of public networking to a specialist his home workstation.

3. Complexity of information

3.1 Medical information objects
Medical practice and patient care are based on information generation,
collection, and exchange among the care providers. In the past two decades,
we have witnessed tremendous growth in the number of medical specialities,
many of which became additional sources of information. While this
specialization improved' the quality of treatment, it also created a
communications nightmare. Information that is not communicated to the users
in a timely and efficient manner cannot have any value no matter how
significant the finding might be. Efforts and investments that went to
developing the information is wasted.

So far, the medical community has placed more emphasis on generating
useful information for patient care than on sharing or managing it. Centralized
management of information has been the norm as it was in other industries in
the past. As in other fields this changing flow of information will cause
organizational transformations and power shifts. Providers of health care
themselves must develop transformation strategies using information
management technologies both to enhance the quality of care and to more
efficiently use of health care resources.

Radiology services pose one of the most difficult problems of information
management, because they generate large amounts of data and they must be

www.manaraa.com

PICTURE ARCHIVING AND COMMUNICATION SYSTEMS 401

managed rapidly. Radiology is one of the most widely used diagnostic
services, with 50-70% of the patients entering a hospital receiving some form
of radiological examination. Radiological information presents a more acute
problem because it must be managed in a timely manner. On a single day a
radiology department like that of the University Hospital of Brussels (VUB)
may handle more than 1.500 sheets of film, including both old and new
images. The management and distribution of radiology information and
radiological images are integral parts of patient care. Though the new imaging
technologies have given the radiologist a powerful set of new diagnostic tools,
however the quality of radiology service has not experienced similar
revolutionary improvements. In fact, the use of many imaging modalities has
imposed additional difficulties to the management, which is already
overburdened by the massive amount of film and supporting data to be
archived and distributed. When time passes, also other departments will
generate images and make this management issue more critical.

3.2 Images
In general, imaging systems deals with two main data-types, image data and
image related data, both of which are normally related to physical phenomena
The image data can be: grey-scal images, colour images, image sequences ...
Image related data can be look-up-tables, text, graphics, regions of interest,
patient and examination related data can also be continuous physical variables,
slice thickness ...

A digital image is one that has been converted into numerical values for
transmission or processing. A matrix is a square series of boxes that gives
form to the image. The individual matrix boxes are known as picture elements
or pixels. Pixel size determines resolution. In medical imaging each pixel
value con'esponds to a three-dimensional volume of tissue, known as a voxel.
A elementary image data type can be define as falling in to the classes:
Raw - arrays of pixels, with pixels being of a basic type like a bit, byte,
depending on the gray or colour levels. Images can have different dimensions
depending on tht, application.

3.3 Medical Images
Medical Images, like each digital image, consist out of pixels. The spatial
resolution is the number of pixels, typically 256*256,512*512,1024*1024,
2096*2096. The contrast resolution, i.e. the grey scale, of one pixel is
typically 12bits (4096 grey levels).

In medical images we deal with a lot of information which is not
comparable to normal administrative data. In particular we are not interested
in one image but in a complex set of images, one study can be 5,40 or even
200 images, it can also be a dynamic study or 3D set.
The minimum amount, for 1 examination, depending on type and application,
between 10 and 30 Mbyte. This data should be seen as one unit for
manipulated, storage, display and transmission of these sets.

www.manaraa.com

402 R.MATrHEUS

At this moment there is also no abstract description of the context of an
image object. Actually study is being done, in the direction of image
description by content. If we compare this with an abstract of a patient we can
represent this by his patient ID.

96% of the information used in the hospital, is non image data but the
amount of information is just opposite. 96% will be image/bytes and only 4%
other patient data. This to illustrate that for medical imaging a mostly other
technical world need to deal with these problems. In the medical world an
images consist not only out of bytes representing the pixel data, but also
related data like, patient name, specific acquisition data belongs to the image
data or format.

3.4 Multi-media
When one considers the procedures taken in caring a patient, it is obvious that
many forms of information are associated. The doctor will first talk to the
patient taking note of his complaints, his medical history and background. In
most cases the patient's blood and urine will be examined, images taken
where appropriate and other more specific examinations performed as the
encounter progresses. The information produced during this encounter
includes sound, vision, image, text, smell, and sense of touch. Presently,
these informations are mostly recorded in a written form according to the
physician's impressions. The physician will try to be as accurate as possible
but a third person will never know what he exactly observed at that time.
Even the physician himself will not keep track of all his cases in his
demanding career. If these informations could be kept in a way that is more
objective, permanent and easy to retrieve it would be of value. This different
types of data are multi-media data. Table I give an overview of the definitions
and relations of these data elements.

TABLE I.
Components and relations in the multi-media domain.

Horizontal components one or more representation media
Vertical elements characterized by implicit or explicit

links among the representation elements
Multi-media multiple representation media. In

enumerating media, the distinctions are
based on the nature of the information.

Hypermedia focus on the explicit links between
representation elements.

Multi-media and hypermedia must be considered orthogonal characteristics.
Clinical data can be in a variety of formats, in the form of voice, of image, of
tracing text. This creates the need for multi-media standards, and
sophisticated terminals, with multi-media and processing capabilities.

www.manaraa.com

PICTURE ARCHIVING AND COMMUNICATION SYSTEMS 403

Infonnation (component of Multi-media) broadcast: Different signals are
tightly coupled and synchronized so that they can effectively be considered as
a single medium.

Information (component of Multi-media) production. The different
components can be processed and edited separately

Multi-media will play an important role in the near future. The total
medical infonnation process is based on documents, voice, images, text and
video all multi-media components. The compact Disk (CD-ROM) and CD
Interactive (CD-I) will be a base for further expansion of the important
market.

4. Implicit Role of Communications in health

4.1 Communication the kernel
In health care, recent decades have seen a considerable acceleration driven by
scientific and technological progress as well as a strong and lasting
commitment of large resources to this objective. Some of the new means
already available and the potential of new developments in the coming decades
may well revolutionize health care. This obviously has social consequence
but it is also of considerable political and economic importance. Europe can
pride itself on a leading role in some areas of health care and the related
scientific domains. However, as the need increases for concentration of
efforts, skills, facilities and financial resources in R&D in related domains
such as biotechnology, medical informatics and telecommunication in
medicine, Europe is rapidly falling behind. Cooperation between scientists,
research centres and increasingly with industries and telecommunication
authorities is becoming a necessity to engage and stay in this high-technology
domain.

The health care sector relies on the collection, communication and
management of large quantities of data, which can be in any format, from
numerical data to voice, images to video. Such data is mostly confidential,
and its quality is essential for decisions that involve life and death.

The demographic evolution, the change in the tastes and needs of patients,
and the development of health services have led to the creation of a wide area
network of health services. Patients and professionals interface this network
at multiple locations and need real-time support for their information and
decision needs. In emergency care and in home care, for example, access to
the network has to be done in mobile conditions.

Health care also means working in remote regions and in the least
developed regions. Professionals who are willing to work in such conditions
often lack access to appropriate expertise to treat their patients and have great
difficulties in keeping abreast with continuing medical education and research.

Emerging information techniques and telecommunication feasibilities, like
Integrated Broadband Communications (IBC), wide area information
services, mobile communications, satellite communications, communication

www.manaraa.com

404 R.MATIHEUS

standards and protocols, as well as new basic services and value added
services (packet switched data networks, circuit switched data networks,
teletext, electronic mail, videotext and other standardized telemedicine-oriented
services) offer new options for improving communications in the health care
sector, for creating an integrated health environment and for creating a market
for new types of health services.

The health care sector relies heavily on the collection, communication and
management of large quantities of data, originated from patients and from the
operation of services. Much of the data is contained in images, which create
great storage and processing problems.

Data and information have to be shared by a wide network of users and
organizations. Clinical and administrative data is produced in many locations:
hospitals, health centres , general practice surgeries, nursing homes,
community organizations, the home of the patient. Present trends towards
primary health care, home care and self help will make this characteristic even
more salient. With the single market of 1993, it can be expected that mobility
of patients increases and that international communication of medical
information becomes a major need. A wide variety of professionals, with
distinct background and practices, is involved in care and has to access and
update clinical and administrative data quickly. In case of an emergency, real
time communication and data processing is often required. Moreover,
because patients and health care professionals have such a variety of cultural
background, interactive interfaces are required with any new
telecommunication system.

4.2 Telemedicine.
Telemedicine is a hybrid word adding the prefix "tele", meaning" a distance",
to medicine. This conveys the basic meaning of the terms which is, " the
support of medical expertise by communications technology so that patients or
doctors can readily access the best possible advice".

Telemedicine means organizing and integrating information technology in
such a way that resources outside the local organization can be used
systematically in the activities of health service. What is needed to achieve
this, includes the development of systems which can be used as" glue" to link
different existing data systems.

The development towards a European medical record architecture, the
development of efficient navigation strategies, the development of intelligent
systems which will determine what the user really wants, and will allow the
user to sift through the distributed data to find relevant information.

The health care system is composed of a patchwork of departmental
services with relatively weak integration, which have developed at different
paces. Much effort has to been put into creating minimum standards to enable
efficient communications within the system, and with other related systems
as, for example, the health insurance sector.

Telemedicine is the integration of two well-established disciplines, the
medicine and the tele-communication. For the use of the European people the

www.manaraa.com

PICTURE ARCHIVING AND COMMUNICATION SYSTEMS 405

integration has to take place within a modified environment, the European
Telemedicine Infrastructure.

4.3 System approach
A computer system can be viewed, at least abstractly, as a number of layers: a
command language, applications, application services, and hardware.
A similar view can be adopted for open systems. As with an operating
system, the topmost level represents the shell or user interface. In the context
of an open system, such an interface may be dependent upon the individual
user. Beneath the interface layer lies the collection of applications available to
the user. The applications, in turn, make use of a number of application
services. These services provide mechanisms and means for ensuring and
aiding the operation of applications within an Open System and across a
number of different computer systems. Three classes of services are
particularly important: database management services, communication
services, and directories.

Database management services and associated databases provide the basis
for the distribution and management of data over multiple sites. These
services also provide the means for user and/or application query of
databases, local and remote, reliable transaction services used by applications,
back-up and recovery.

Communication services provide the means for routing, file transfer,
remote process execution, etc. It also provides the basic mechanisms for
message transfer between applications at different sites.

Finally, directories provide the means for identifying the entities within the
system. In particular, they allow one to identify users and to name system
wide objects, specify their properties, location, associated privileges,
ownership, etc. They can also be used to aid in the development, maintenance
and operation of the entire system. Together, this primary set of services
provides the basis for additional application services, such as network
resource management or performance analysis.

It is known that medical information systems are very expensive to develop
and to implement, in terms of design and maintenance. One can also state that
the applications keep no pace with the technology and so standardization of
developing and modeling healthcare systems is extremely important. It is a
must for interchangeability, for transportability and to keep costs down.

It is important because in Europe there are two trends. First of all the
ground systems will decline and the vendor systems will incline over the next
years. Hence the need for a framework which fits everything together.
Building a health care information system is very complex, and one has to
understand that to build one unique composition at an European level is not
obtainable, partly due to the different policies and also due to different
strategies and scenarios used. Integration is primordial and one has to follow
a top-down approach, where one is starting from the healthcare environment
and goes down to overwhelming detail and describes all operational tasks. By
selecting and subdividing one defines a healthcare information system

www.manaraa.com

406 R.MATTHEUS

architecture. Further on, one defines common conceptual schemas and at the
last level there is the physical design, which is not the aim of this task.

The other trend is that healthcare information system framework reflects the
different bodies and organisations within Europe: it can cover laboratory or
healthcare medical institutions. The common concept of the schemas is the
logical model with final data descriptions and processes. What is important is
that, defining from the HCI-framework down to the common conceptual
schema, the degree of complexity increases, but that the higher one goes, the
higher becomes the level of abstraction.

5. PACS - IMACS: A definition

5.1 PACS
The term Picture Archiving and Communication Systems became somewhat
misleading for many current developments, as emphasis is given to archiving
which is certainly not any more the main reason for such an environment.
Image Management and Communication Systems is a much more accurate
description. It is the PACS concept, but looked at as a service.

5.2 IMACS
Image Management and Communication Systems: describes an advanced
image based medical information system. The system can manage varieties of
medical images and is capable of retrieving and displaying alphanumeric
information from the conventional medical information system, and maybe
other Multi-media data. The IMAC system could be one of many
configurations ranging from a single module capable of supporting a small
medical operation, to a network of modules shared among major medical
centres. IMACS covers the total hospital and PACS is more radiology
restricted.

6. Levels of Application

6.1 Generic configuration
The generic configuration applies to all organizational levels, but the details
rise in complexity, where hardware and communications are seldom the
problem. The difficulty arises with image and related data linkage and relating
to an increasing amount of diverse data and records, and when controlling the
processing of similar or related images and related data. Table II gives the
different classes, there needs and problems.

Functional Level or sub-departmental: At this level, the image system has a
singular, well-defined scope and purpose. A functional level can be defined
as a section where the same type of examinations are done, which indirectly
results in the same type of examination equipment. Local reporting,
manipulating, discussing and processing takes place.

www.manaraa.com

PICTURE ARCHIVING AND COMMUNICATION SYSTEMS 407

Departmental Level: At this level, the scope is still singular, but the
operations are more diversified. More archived information will be consulted,
comparison between old and new images takes place. A higher level of
integration of the information occurs.

Enterprise Level: At this level, all systems in a hospital or in its
organizational equivalent are integrated: for example, communication and
other services are available in a medical domain, diagnosis can be done in a
university hospital, the treatment at a local hospital.

TABLE I!.
Organizational levels of use. Image systems work the same at all organizational levels,
much more so than conventional handling, but the technical differences are critical and must
be built into lower-level systems to support the integrations that are intended for higher
levels.

Functional
level

Department
level

Sco e of activit
* Singular, well-defined

purpose; often unrelated to
other functions

* Usually in support of
dedicated needs

* Singular activity that is
broader in scope

* Often marked by an intense
number of acquisitions and
accesses

* need for more information
inte ration

* Covers every aspect of an
organization that heavily

Entewrise level relies on images
* Can be narrowly or widely

focused

6.2 Why medical imaging ?

Re uirements and roblems
* From 1 to 4 workstations,
* Awareness for integration

* One or more networks of
workstations

* Hundreds of details are often
overlooked during planning

* Can be any size, but more
often than not a series of
departmental-level set-ups

* Integration of components
can be difficult

* Should be limited to
dedicated applications

In order to change the film based systems, PACS must bring major
advantages in clinical use and be integrated in the whole chain of medical
events - inside as well as outside the department of radiology.
The clinical advantages of PACS are :

- Better (easier,faster) access to patient information, including archived
images. Using the conventional system, primary reporting is efficiently
performed, but the access to previous examinations, that must be fetched
from archives, is far more difficult and hazardous. It always introduces an
important delay in the diagnostic process. Comparison with previous
examination is a key issue in medicine in several situations : in oncology,

www.manaraa.com

408 R. MATTHEUS

where it represents the basic tool for evaluating the efficacy of the treatment; in
orthopaedics; for medico-legal evaluations; in intensive care units.

Moreover the time between: when the patient consults or is hospitalized,
and when an efficient treatment is instituted, is an important factor.
Shortening that interval is at least positive for the psychological comfort of the
patient; in some situations, it can be medically important or even life-saving.
It is in addition a factor of cost saving for the health care system, especially
for in-patients (by shortening the hospitalization).

Therefore, everything that can shorten the delays in the diagnostic chain,
represents a substantial qualitative advance, as well as a cost saving for the
health care system. The PACS technology can here deliver a major clinical
improvement.

- Image manipulation capabilities. Keeping the image information from the
digital modalities in digital form offers the possibility to use the images as
input for different types of specialized diagnostic exploitations (e.g.
multiplanar reconstruction from magnetic resonance, 3D data set, 3D
reconstruction, automated image analysis) or for computed procedures for
therapeutic aid (radiotherapeutic treatment planning, stereotaxy, surgical
simulation, ...).

- Diagnostic decision support - scientific and educational purposes. Digital
archiving constitutes, especially if a dedicated indexing technique is used, an
ideal basis for scientific and educational retrieval and collection. PACS
technology also lends itself very well to a coupling with decision support
systems.

7. Factors and Trend Lines

Cost Reduction: The pIice of just about every element associated with PACS
IMACS is declining. This element has been part of the history of data
processing since its inception, and there is no reason to believe it will stop.
Since only very recently, the system developers based most of the
developments on IT&T products. It results in cost reduction and more
migration paths in the future.

Wide-area network extreme high-density trunk lines: Eventually, high
density communications trunk lines will be able to carry traffic between
computers and other stations -as if they were integral units of a single
computer. This is especially important for PACS because of the long record
lengths and the resulting pressure to distribute storage in systems where
central storage could be more efficient and contribute to improved interior
lines. Also in this area IT&T should play an important role.

Workstations: Workstations are available with resolutions acceptable for a
lot of applications, the addressing possibilities are becoming acceptable.
Network integration becomes more easy. The user-interface had a lot of
attention and even standard tools become available.

www.manaraa.com

PICTURE ARCHIVING AND COMMUNICATION SYSTEMS 409

The factors have arisen from within the computer industry. Some of these
factors have always been present, and others are strongly related to the advent
of practical image processing:

A renaissance for the computer industry: It is only recently that the medical
imaging industry and system integrators begun to invest in this market
segment.

The pressure to regain international economic leverage: The EC is
investing a lot in this and related fields in the 92 internal market Frame work.
Pilot project like EurIPACS will playa crucial role during the next years in
setting up a PACS service.

The sinergy with related industries: A partial relation and sinergy is
coming from the IT&T market and electronic document industry.
Communication and Multi-media will playa key role in the near future. The
advances in the public networking (ISDN/B-ISDN) and HDTV will stimulate
the tele-medicine applications.

Strategic push and pull: The corporations and agencies that are first with
image processing are pushing technology, and the balance of the competition
will be pulled into the maelstrom just to keep pace. Perhaps it has always
been this way, but the image processing momentum accelerates the process.
Open architectural environment: Most vendors have maintained an open
architectural marketing approach, insofar as the realities of hardware and
software permit. This stance has encourages new partnerships among them.
In tum, this seems to accelerate technological research even more strongly
than the strategic push and pull factor.

8. The major PACS components

8.1.Medical Images: There life-cycle.
Different stages can be distinguished, starting with image creation going to
image communication, manipulation, processing to image display and
storages. The components of the image-life-cycle are explained in table III.

The data flow in an imaging environment is reflected in the figure 2, based
on the working draft, information technology - computer graphics - image
processing and interchange eIPI) ISO/IEC. In the area of medical imaging
special emphasis should be given to the information generation environment
and image-to-image data conversion. Data integrity is an important aspect,
where destructive and non destructive image manipulations are strongly
dependent on the application.

www.manaraa.com

410 R. MATTHEUS

c:=:J Medical imaging

Fig 2. Data flow in an imaging environment.

TABLE III.

Image sensing transformation of real-world image information to
digital
image; e.g Image acquisition device, scanner, ...

Image presentation transformation of digital images to real-world
image information; video monitors, printers ...

Image-to-image transformation of digital images to digital images; e.g.
grey value enhancement, edge detection, ...

Image interchange interchange of digital images among imaging systems;
this serves for the communication of digital images
and

Image analysis

Image synthesis

related non-image data among imaging systems.

transformation of digital images to non-image data;
this encompasses basic functions like histogram
generation, mean value ...

transformation of non-image data to digital images;
this encompasses functions such as the rendering of
lines, creation of test images ...

www.manaraa.com

PICTURE ARCHIVING AND COMMUNICATION SYSTEMS 411

8.2 Image Acquisition
Radiography is an art form that has been used to investigate wide array of
persons, animals and objects. Understanding visual perception is an
important aspect of clinical radiography. This understanding helps to
overcome misperception of an image. The human eye is designed to gather
light, focus it, convert it to nerve impulses and transmit it to the brain for
processing.
Threshold detection is a visual phenomenon involving the perception of
extremely small or faint details. The boundary effect occurs because the
visual system has difficulty perceiving contrast differences that are distant
from one another. When densities are adjacent, small differences can be
perceived. When thee eye perceives a boundary, a change occurs in the
intensity of the impulses sent to the brain. This change in intensity creates an
effect known as edge enhancement, which makes the boundary appear
distinct. Contrast perception is dramatically increased by eye motion or
scanning the image. Pattern recognition involves perceiving combinations of
details that can be defined and classified towards a diagnosis. It helps the
radiologist compare mental images of patterns with medical knowledge.

Conventional radiography. (XR). Attenuation is the reduction in the total
number of x-ray photons remaining in the beam after passing through a given
thickness. The composition of the human body determines its radio graphic
appearance. When studying the absorption characteristics of the body, four
major substances account for most of the variations in x-ray absorption: air,
fat, muscle and bone. Photographic materials are photo-sensitive, or capable
of responding to exposure by photons.

New developments where made possible with the introduction of
informatics. The method by which these imaging modalities have been
computerized is digital processing of imaging information. A detector of
some type must be used to acquire the image information.

The primary mathematical method used in the creation of computerized
medical images is the Fourier transformation. Convolution is the process of
modifying pixel values by a mathematical formula. Deconvolution is the
process of returning the pixel values to their original level by a reverse
process.

The quality of the data acquired from the image receptor is measured by its
frequency, contrast and noise. The density and contrast of the digital image
are controlled by varying the numerical values of each pixel. The window
level controls image density. Window width changes the gray scale
expansion or compression and therefore controls contrast. Resolution is
controlled by the matrix size.

Computer tomography (CT) produces a digital tomographic image from
diagnostic x-rays. The basic principle of CT involves digitizing an image
received from a slit scan projection of the patient's body and then projecting it
back through mathematical algorithms. The combination of the transverse
sectioning procedure with slit scanning produces an image of significantly

www.manaraa.com

412 R.MATIHEUS

better quality than that available with other imaging methods. Primarily the
image differentiates various types of soft tissues.

Digital subtraction angiography (DSA) combines the digitization of an
image with subtraction techniques.

Magnetic resonance imaging (MRl) uses magnetism and radio frequencies
(RF) to create diagnostic sectional images of the body.

Ultra-sound (US). The application of ultrasound in medicine is based on
the sonar principle. Acoustic waves are transmitted and reflected at interfaces
according to the change in acoustic impedance.

Positron Emission Tomography (PET) scanner maps the distribution of
pharmaceuticals labelled with positron emitting isotopes in order to construct
detailed images of organ metabolism, physiology and function.

The only way to convert the conventional x-ray film to a digital one is by
means of a laser digitizer. This laser scanner can in 6 seconds convert a film
to a digital image of 2kx2k 16 bit, which is not too bad for most procedures.
Major problems occur in operability, which is labour intensive; in throughput
limitation, due to the time it takes to download the data to other mediums,
which result in one examination of 6 images taking about 4 minutes; and in the
way patient data is entered to the image.
The phosphor plates (DR) are a solution to some of these problems.

Digital Radiography (DR) or photo-stimulable radiography uses photo
stimulable image receptors made of barium fluorohalide screens that can store
a latent image which can be released upon stimulation by light. They can be
exposed in cassettes with diagnostic radiographic equipment.

All of these systems have a computer involved in the image generating
process. This control and image processing computer is in most of the
existing systems, dedicated for this tasks. Only in very recent development
versions, networking possibilities are possible, even then without a clear
interface, or dedicated software. The only advantage is that even with very
tricky solutions this is the only way to have a digital link.

The other group of systems like Ultra Sound have an embedded dedicated
computer involved without communication possibilities. The only way then is
to convert to digital by means of an A-D convertor or frame grabber, which
can results in information loss.

Examination type: Images are central objects in a medical environment like
discussed in section 3.3. A clinician will look at a patients examination
consisting of several images. This group of images can be characterized by 8
parameters. Based upon this 8-tuple, minimum requirements can be
calculated for image-computers (resolution, manipulation functions, storage).
Compression is not discussed hear, because compression can result in
information loss, which is clearly a legal problem in medical imaging. A total
reversible compression of 4: 1 will be possible and is sometimes used. Table
IV gives an example of different examination classes acquired at the VUB
hospital in Brussels in 1991.

www.manaraa.com

PICfURE ARCHIVING AND COMMUNICA TlON SYSTEMS

Definition of a 8-tuple (M,E,N,S,R,D,T,C) : Examination_type
M : {CT,MR,US,DR,XR,DSA} modality source
E : {body, head, neura, cardiac, abdominal, vasc, bone} examination
N : maximum number of images
S : maximum number of marked images
R : {64,128,256,512,1024,2048,4096} matrix n x n
D : {2,3,4} display technique (depends on acquisition)

2 : 2D image (x,y)
3 : image of a 3D set(x,y,z)
4: image in a dynamic 3D set (x,y,z,t)

T : average examination time
C : {8,12} contrast resolution in grey level (bits per pixel)

413

Statistics: Different data types can be defined in a PACS network: (1) image
data (2) image-related alphanumeric data, mostly in the image header, (3)
patient related data and (4) control commands. The image data can be grouped
in classes. Due to the different nature of the types of data and to the different
requirements concerning the management and the flow, the network can be
partitioned into message, image data and medical related data.

G : generated image data for one examination (Mbyte)
F : Frequency of the examination (Examination/ Five year)
A : total image data (Mbyte).

TABLE IV.
Parameters of the 8-tuple examination_type and four additional parameters acquired at the

radiology department of the University Hospital Brussels (VUB) in 1991. Modality
clusters can easily be distinguished.

M E N S R C T G F A
cr Bodv 34 21 512 12 30 17 2 34

Head 20 15 512 12 30 10 2 20

MR Body 80 13 256 12 40 10 1 10
Neuro 128 13 256 12 40 16 1 16
Bone 173 25 256 12 55 21.6 1 21.6
Cardio 19 19 256 12 35 2.3 1 2.3

US Body 8 4 256 8 20 0.5 3 1.5

DR Body 8 8 4096 12 15 256 2 500

DSA Cardio 400 20 512 12 20 200 1 200
Cardio 100 20 1024 12 30 200 1 200
Vase 400 20 512 12 30 200 1 200

PET Neuro 20 5 256 8 40 1.25 2 2.5
Cardio 20 5 256 8 40 1.25 2 2.5

www.manaraa.com

414 R. MATIHEUS

8.3 Networking
Broadband communication, includes not only high-speed data transfer via
broadband networks but also television by way of terrestrial transmitters,
satellites, and cables, and moreover video conferencing and smart building
networks. New possible forms of broadband communications are emerging,
table V gives examples of relations between the applications and services.

Table V: Broadband Applications and Services for imaging and medical imaging.

Broadband Broadband
Applications Services
Category Examples
Interactive data PACS Data transfer (connection-
communication CAD/CAM, file transfer, remote oriented)

printing of newspapers,
interconnection of LAN/P ABX,
access to existing networks/services

Realization of MAN (virtual private Data transfer (conncetionless)
networks)

Document transfer and retrieval
Colour telefax, browsing through
document archives

Interactive video Tele-medicine / tele radiology Videoconferencing
communication Group-to-group or person-to-group

video communication (point-to-point
or multipoint), joint editing

Video telephony
Person-to-person video
communication, transfer or mail of
individual video scenes, video
surveillance

Broadband viedotext, video
Information retrieval, teleshopping, retrieval
counselling, learning, games, video-
on-demand

Distibutive Home carel preventive medicine / TV distribution
communication medical education

TV with today's or enhanced quality
(PAL, SECAM, NTSC, or D2-
MAC), pay TC, coporate TV HDTV distribution

TV with high-resolution quality, 3D
television

www.manaraa.com

PICfURE ARCHIVING AND COMMUNICATION SYSTEMS 415

A distinction must be drawn between applications and services. Applications
describe the type of telecommunications used in the subscriber area (including
the terminal equipment and the organizational environment). Services are
made available on the network in the form of their attributes by the service
providers. They are each intended to support a wide range of applications like
indicated in table VI.

The applications in the professional sector for broadband technology range
from medical image management to computer-aided design (CAD) and
computer-aided manufacturing (CAM), and from remote printing of
newspapers to colour telefax and workplace videoconferencing, to retrieval of
information including pictures, and to electronic cinema, respectively. Group
communication within closed user groups or with the aid of virtual private
networks in the public network is acquiring increasing importance. Virtual
private networks of this kind can be realized, for example, as metropolitan
area networks (MANs) on the basis of connectionless data transfer services in
the public network. There is a strongly growing demand for this service, with
a simultaneous increase in the bit rates being transferred. Also growing in
importance is multi-media communication, which is the combined use of data,
text, graphics, image, motion video, and audio (voice and sound). Multi
media communication best adapts itself to the human being's complex
perception, communication, and way of acting, but also creates new technical
demands.

TABLE VI. Communication clusters and there application scenario

Branch Application Scenario Benefit
Medicine Access to patients' case * Management and processing

histories/radiographs and specialist * Fast information
advice for operations * in-out hospital

Public Central specialists counselling on the * specific counselling
administration labour market by employment offices * Higher efficiency

and associations
Publishing Joint editing and remote printing of * Later copy deadline

newspapers and magazines * Lower transport costs
Banking Electronic branch office * Comprehensive 24-hour

service
* Improved security

Industry Distributed microchip design between * Fewer harmonization
the R&D centres of international problems
companies * Short development times

Construction Planning dialogue between * Plans always up-to-date
architects/en~ineers * Three-dimensional images

Trade Maintenance support and training for * Latest know-how
automotive workshops by a service * "Natural demonstration"
centre

Home Teleworking, remote instruction, and * More time/convenience
teleshovving * Greater flexibility

www.manaraa.com

416 R.MAITHEUS

Table VI also indicates the benefits of broadband applications for a series of
uses in various branches. The prehensive, more exact, and faster infonnation
than was previously possible. For broadband communication it is not suitable
to assess future demand by extrapolating from the past. Many of the relevant,
influential factors change, and technical solutions are forever in competition,
one substituting or superseding another. One example of a comparable
development is the widespread use of personal computers, the extent of which
could not have been practically predicted just a few years ago. Critical mass
and selfstimulation play an important role here.

8.4 Communication needs
Network services: Communication networks are becoming more and more
complex and computer networks in particular are becoming more and more
heterogeneous. Careful management of these networks becomes a crucial
factor for maintaining efficient and reliable network operation and for
increasing perfonnance of the quality and the quantity of the services provided
to the end-users. Since traditional methodologies for network management are
not coping well enough with todays' complex networks, new approaches are
being investigated. Recently the utilisation of Artificial Intelligence and Expert
System applications has begun to be explored for network management.

Figure 3. shows an possible configuration of network management or
PACS service management.

Network management is needed in such an environment, the size of a data
transfer being several orders of magnitude larger than in a data transfer in a
local area computer network. The existing local area network technology uses
protocols which are not suited for image transport. Therefore, it is necessary
to sequentialise the image traffic on the network explicitly, i.e. access conflicts
are not left to be resolved by the transport layer but are arbitrated by a
software module. In addition, the network traffic can be distributed over time
because knowledge about patient-, radiologist-, and imageflow is available.

This knowledge can be exploited for careful planning and scheduling like
for example organising prefetches of images from archive to local store
overnight.

A graphical editor allows the interactive specification of a specific network
configuration, i.e. a composition of network segments with associated image
acquisition stations, viewing stations, storages, hardcopy facilities, etc. The
combination of the generated network model and the simulator allows us to
test and experiment with different traffic management strategies and different
network configurations.

Traffic management is a prime issue. To a certain point, traffic
management can be static, taking into account the network configuration and
knowledge of image flow, patient flow and radiologist flow in a hospital
environment. But beyond that point decisions on which transfers should be
served first, must be made dynamically. They should take into account the
current state of network including pending request, actual disk usage, etc.

www.manaraa.com

PICTURE ARCHIVING AND COMMUNICATION SYSTEMS

Traffic
Manager

Flow
Manager

"- , f .~ Configuration
'" , Manager

____ "(~-M"'::"'-on-it-or-"""J -----""

r _-~.,.",..,..".,
I @< NetWork,
L_

Simulation

417

Fig 3. The network management tool; Two main modules of the network management
system implement the traffic management task. The flow manager creates and alters image
transfers while the traffic manager sequentialises those image transfers over the network.

The next process takes into account the physical dimensions, such as the
number of storage layers, the access time of layer and the throughput of the
network(s). It will use rules that direct the optimum use of the PACS
configuration. A change in the configuration, e.g. a workstation out of duty
will be recorded in this data entity. The actual occupancy of the storage and
the actual network traffic is recorded in the entity PACS network/storage.

Somewhere the logical description has to be translated into a physical
description. It is assumed that this takes place at the start of this process.
After the physical routing of an image (moving a certain image from storage x
to storage y at a celtain point in time) has been decided, the process continues
with the physical transport: e.g. breaking the images down into transportable
packets. The result is the transfer of an image to another storage (or the
release of storage space occupied by an image)

High Connectivity: A source may need to transmit to anyone or more of
many destinations. A destination (i.e., user) may need to examine many
sources.

High Information Rate: Wide-band channels are capable of transmitting
many bits per second. The criteria for "high", "wide", and "many" vary
widely with type of signal and level of expectation. The 160 Mbits/s
information rate channel may seem a high information rate for ordinary
interactive computing, but it is too low for convenient transmission of large
files (e.g., high-resolution x-rays).

Security-Privacy: Security is a complex of characteristics, some of which
provide the technical basis for the protection of privacy. These are two issues
that should get special attention in the context of medical computing.

Authentication: A good authentication scheme provides the electronic
equivalent of a signature. Ideally, authentication identifies the author of a
document and makes it impossible for him to escape responsibility for the
authorship. Ideally, also, authentication makes it impossible for anyone to

www.manaraa.com

418 R. MA TIl-IEUS

change even one character or bit of the document without destroying the
"signature" .

High Reliability: Low probability that network service, as seen by the
application, will be impaired by malfunctions. For P ACS services a full
reliability is needed. The PACS architecture should contribute to this.

Priority Service: Guarantied or preferential service, especially when the
network is congested, is widely regarded as essential for certain very
important functions or for certain very urgent clinical cases.

8.5 Storage media
Database: the kernel of PACS. As databases grow, they put heavy demands
on storage capacity. Terabyte systems are likely to be needed in future large
image databases. Multi-media DB emerge as a natural evolution of the
evolution of the distributed database systems (DDBSs). The main aim of a
multi-media DBS (MMDBS) is to provide uniform representation of
heterogeneous data in multi-media from multiple types of media. The
distributed aspects of such systems are clearly desirable in application areas.
In the real world information is often communicated and exchanged among
people by means of a variety of media. They communicate through speech,
drawing diagrams and pictures, write notes and point things. Therefore in
addition to record-based information, people seek computer-based support
for storing and managing data represented as voice, images, text, and for
communicating using these media.

Load factors are the sum of storage requirements, the level at which each
will be stored for what length of time. This sum, in an economic sense,
drives the system. It dictates how much hardware will be needed and will
usually establish a range in the likely number of workstations and the scope of
network requirements. To be sure, processing requirements and constraint
factors will exert a major influence on the exact numbers, but in practice most
installations fall into patterns. A project that holds only 20 thousand records
will not likely require one thousand workstations; however, one that
consumes 100 million records will seldom operate efficiently with 10 of those
workstations. Load factors are best understood from the three common
methods of storage. Not all systems use all three levels, and a few depend
only on on-line optical disks.

Magnetic disks: The magnetic disk dIives used to store ordinary data work
equally well for image systems, provided that they have the capacity to store
the much longer records. In practice, they don't have this capacity, nor need
they. The fast response time of these drives is necessary only for the most
intense processing periods, which usually occur during the first few hours or
days after a document is acquired. Thus, only a tiny fraction of the records in
an image system will be stored on this medium, and some installations
dispense with it entirely.

On-line optical disks: Access time from optical disks is noticeably slower
than from magnetic storage, ranging from one to 15 seconds. The reason is
that most optical disk libraries are modeled after jukeboxes. A call for a

www.manaraa.com

PICTURE ARCHIVING AND COMMUNICATION SYSTEMS 419

specific records is checked against an index (which itself is almost always
kept on a magnetic disk). When the optical disk on which the record is
located is identified, a signal is sent to the jukebox to retrieve that disk and
inselt it into a driver.

Off-line optical disks: This method varies from on-line storage. If the
index indicates the disk is no longer on line, a message is sent to an operator
who then retrieves the disk from a shelf and inselts it manually in a drive.
Depending on staffing and loads, this could take anywhere from a few
minutes to several hours, but the images relegated to this level of storage are
rarely called for.

In one approach to the trade-off style, all records are kept on-line on optical
disks and then the ideal trade-off point for moving them to off-line status is
determined. This is usually measured in predictable number-of-accesses per
baseline number of records per unit of time, for example, two accesses per 10
thousand records per day. Almost without exception, access requirements are
lowered with the passage of time; however, the rate varies with the
installation. Then, if extraordinary efficiency is required during initial
processing, newly acquired records should be held in temporary magnetic
storage. Notice that doubling the time doubles the tax on disk drives, and this
could prove expensive.

8.6 Display - Imaging computers
For PACS environments in clinical use, different classes of requirement-levels
for image manipulation and viewing can be defined from a medical,
organizational, technical and economical point of view. These requirements
have a direct impact on the specifications and cost of the image computers as
well as on their level of integration in the PACS, RIS (Radiology Information
System) and HIS (Hospital Information System) environments. Digital
imaging used in radiology requires a high quality display console for the
medical specialists to review and manipulate images. Based on the application
scenario different classes of stations can be concidered, going from a
specialized station to a remote viewing station. These stations can be very
advanced platforms based on parallel computing for dedicated image
processing functions or advanced multi-media display stations. Only a few
common functions are needed on the display stations, like centre and window
(gray level manipulation), zooming and panning. The user intetface is as in a
lot of applications a key factor.

9. The first generation

The first generation of PACS implementations, as developed in the last
decade, was mainly technically driven. This proved an important source for
the acquisition of experience. It is however generally accepted that they failed
to demonstrate a real utility in the clinical environment. As a consequence,

www.manaraa.com

420 R. MATIHEUS

PACS have not yet universally been recognized as a useful medical system by
all the actors of the health care community.
This failure was partially due to the under estimation of clinical needs, and the
lack of maturity of the technical tools (storage, network, digital radiology),
their integration and adaptation in the medical world, and to the absence of
recognized standards.

Most first generation systems were inadequately integrated within the
hospital or radiological information system. This led to inconsistencies in
patient data, difficulties and errors in the retrieval of the information.
Experience also showed that the need for redundant entering of the patient data
via keyboard is a factor of complication; it can generate errors and non
acceptance of the system in the clinical environment.
Finally the problems of the user-interfacing was insufficiently researched and
addressed, the needs of the various classes of users are different and specific.
Those very requirements cannot be addressed in the centralised architecture.

10. Medical driven approach

A synthesis between the knowledge acquired from the first implementations,
the progress of the available technologies, and the cooperative work
undertaken by the partners of our research consortium within the AIM
exploratory phase (Advanced Informatics in Medicine; an EC funded
programme), have led to a innovative concept of the future of PACS.
It can be presented as an integrated but decentralized structure, where small or
medium size units are specialized to suit the requirements of specific clusters
of users in the hospital. They are linked together as a logical whole that
remains transparent for the users.

Integration with other systems in the department. The implementation of a
full scale PACS, can only be realized successfully if such a PACS is coupled
with the HISJRIS in that hospital, and this for different reasons.
The images within the PACS need to be identified by means of patient data.
To avoid retyping and elTors in patient identification, data must be transferred
to the PACS can be used in the PACS data-base. The medical history and the
radio-diagnostical reports of the patient residing in the HIS must be available
on the workstation of the PACS too. It should be possible to present both the
image and the alpha-numeric data for the same patient in a coherent way on the
PACS workstation. In such a situation, the HISJRIS functionality, e.g. report
editing, should be available through the PACS workstation.

The memory and communication capacities of PACS systems are limited,
even using leading edge information technology. To obtain acceptable
response times it will be necessary to devise intelligent image management
strategies, e.g. to send images in advance from the central archive to the
workstation where the user is going to require them (prefetching). Such
strategies for image migration can be based on data from the HIS, such as
patient location and medical history.

www.manaraa.com

PICTURE ARCHIVING AND COMMUNICATION SYSTEMS 421

Reporting/consulting stations will provide the interface between fully
digital Picture Archiving and Communicating Systems and their clinical users
(both radiologists and clinicians). User-friendly, appropriate interfaces which
meet the requirements of various user groups and which support the relevant
diagnostic tasks will be of utmost importance for the success of PACS.
The adaptive user intelfaces relate their functioning to the context they work
in. To achieve context sensitivity and reactions, they have to be based on
knowledge about the specific requirements of users and tasks and about the
general task domain. These explicit and formal user-, task- and domain
models may be pre-specified (e.g. using a priori knowledge of the medical
diagnostic process, derived from interviews, questionnaires etc.) or acquired
and updated during the users' dialogues. The purpose of adaptation and the
degree of adaptivity may be defined in wide limits.
User-friendliness is generally regarded to result from a predominantly user
centered, cyclic and interactive design process. User-centered design,
however often focuses on some kind of average user and assumes a number
of general goals the user is interested in. Changing requirements that arise
from different kinds of users and the diversity of goal oriented tasks and sub
tasks which users have to perform are rarely considered during system design
and almost never at system runtime. Most human-machine interfaces appear
to be static: they function uniformly, regardless of what kind of user is
working with a system and what actual task the user is concerned with.
Adaptive user interfaces, on the contrary, are dynamic.

Conceptually adaptive user interfaces take into account that workstation
users and their actual tasks are variable during runtime. In radiology, digital
diagnostic display systems will be used by quite different stereotype
categories of users (e.g. radiologists, clinicians, technicians etc.) with
diverging duties and information requirements. Even within a particular user
group, personal preferences and styles can be observed (e.g. how to alTange
images on a display screen). Analysing the filmbased diagnostic process,
various categories of goal-oliented tasks can be distinguished, ranging from
simple control actions (e.g. image quality check after an examination) to quite
complex image handling and display procedures (like preparing a
demonstration session for referring clinicians).

Adaptive user interfaces are designed with the main objective to increase
usability and convenience. From the user point of view, adaptive systems
should appear to be supportive by acting in a cooperative manner. This has to
be seen under the boundary condition that consistency and predictivity of the
interface will not be affected by the adaptation mechanisms. From the
designers' point of view, user interfaces have to be based on formalized
descriptions (model) of the requirements for different users and tasks. These
models have to define major parts of the workstations' functionality on a high
level of abstraction.

www.manaraa.com

422 R.MA1THEUS

11 Open systems

From a pragmatic viewpoint, the development of an open system presents
many of the same challenges encountered in the development of any complex
software system-concern with reliability, maintainability of software over a
long timeframe. An open system, however, also brings unique problems: for
example, it may embody several different computer systems, comprised of
different hardware and different operating systems, may involve several
independent databases, and it may be spread over a wide geographical area.
In the specification and design of an open system one may have to deal with
existing databases, foregoing the luxury of building from scratch more
convenient specifications. Moreover, because an open system involves
processes executing on several machines, the testing of an open system is
difficult, and often requires the development of specialized tools. PACS /
IMACS environment should be considered as open systems in this multi
vendor world.

12. Standardization

In order to respond to the challenge of integration and communication in the
world of Medical Informatics, in June 1990 the European Standardization
Committee (CEN) founded a new Technical Committee: TC251 "Medical
Informatics". CEN TC251 is responsible for the standardization activities in
Medical Informatics in Europe. CEN TC251 deals with the organization,
coordination and monitoring of the development of standards, including
testing standards, in Health Care Informatics as well as the promulgation of
these standards. Seven different working group are created.

l.healthcare infOlmation modeling and medical records
2.healthcare terminology, semantics and knowledge bases
3.healthcare communications and messages
4.medical imaging and multi media
5.medical devices
6.healthcare security and privacy, quality and safety
7.intermittently connected devices

Different items are defined for Standardization work in the area of Medical
Imaging and Multi Media. Some short-time targets and needs are defined,
other are more long-term and topdown,

-Functional profiles for medical image interchange
-Medical Image management standards
-Medical Image and Related data interchange Format Standards
-Off-line media
-Standard classification and codes for Medical Image Processing

www.manaraa.com

PICTURE ARCHIVING AND COMMUNICATION SYSTEMS

Image Processing

UIB' intediu:e

423

8·tota&e
'"X'

Off line devices

Fig 4. A possible P ACS / IMACS architecture, with bold indication the standardization
needs.

The first items were selected by CEN TC251 as very important and work has
started in these areas. Functional profiles are given to EWOS in close
cooperation with WG4 because this item is related to open system protocols
which is the speciality of EWOS. For the other, project teams are set up.
First draft proposals are planned for the end of 1992. Figure 4 shows an
possible PACS configuration. Bold words indicate standardization needs.

Of course close contacts exist between the international activities and one
international standard is also one of the concerns of the working groups.
Standardization is needed for interoperability between these heterogeneous
systems, and it will also stimulate the technology and communication
systems. These are necessary services for the information systems like
PACS. These will then increase the usage of IT&T in the healthcare sector,
resulting lower price setting in this complex domain and easier integration of
the new communication components. These interaction is clearly reflected in
the figure 5.

www.manaraa.com

424

Increase of the usage of IT & T
in the Health Care Sector

Communication
,...--- Systems

Standards

Infoffilation Systems

R. MA TTIIEUS

Fig 5. The Spiral phenomenon; In the health care sector the use of IT&T will increase is
standards are defined. Standards are needed for communication systems, which are the
driving fores for new generation information systems.

13. Conclusion: Film Independent Radiology

The Health care model information flow clearly indicated the needs for
communication between the medical doctor and specialist, between specialist
and services providers and inside, between the service provider and the
resources.

The main technical components of an PACS / IMAC world are given,
starting with the image acquisition units. These devices in one or another way
generate the images, but also these devices also need to be connected to the
communication and network environment. A distributed data-base and
hierarchical storage level are necessary for management of the images, while
special display units will be needed for the high resolution images. More and
more direct digital acquisition units are installed in the hospitals and new ones
like digital Radiology based on phosphor plates are coming soon.

Different components important in the health care model evolution process
were described. A discussion is given of hardware, software,
communications, data and users. An analogy is found with open systems and
in the same line an extraordinary range of tools and services are needed, a
precondition to the success of such an environment will be a revolutionary
change in the technology of user interfaces. Components coming from the
Information Technology & Telecommunication market should be used from a
technical and economical point of view. Standardization is a high-priority
need if we don't want to end in a total communication chaos. Present image
generation and image management devices or IMACS components have no
standardised transport systems and are not designed to operate in a
heterogeous multi-vendor environment. Standardization will play an
important role and is a must for this medical informatics area.

www.manaraa.com

PICTURE ARCHIVING AND COMMUNICATION SYSTEMS 425

Fig 6. Communication is the kernel of the PACS/IMACS service: Communication
between user, systems and processes.

Short time and long term targets are needed, and here, too standards from the
IT&T market should be used if appropriate.

Tele-medicine will be an important area for Europe, services are needed to
ensure a step by step approach, integrating technology from different fields.

A PACS service is needed not because we want a film less radiology
department but a film independent hospital and want to add additional
possibilities to image manipulation, communication and processing.
The back-bone of these IMAC's is of course "communication"; like indicated
in figure 6. Communication means integration. Communication between
pieces of equipment, communication between application sessions and
communication with users. Successful implementation of IMAC does not end
with either the development of a good system of the implementation of a series
of pieces of equipment. IMAC means new ways of doing business and
changes in organizations caused by changes in information flow patterns.
Operational scenarios in the network environment must be considered from
the beginning.

Elimination of film cannot solve all the problems in image management. It
will on the other hand create a number of new problems. Total elimination of
films will be difficult to achieve in a large medical centre for many years to
come, because the films will be required by other non-IMAC hospitals, but it
will be possible to develop a film-independent imaging service in the near
future.

www.manaraa.com

426 R. MA'ITHEUS

IMAC is inevitable and necessary. It will affect the way radiology is
practiced. Changes in the pattern of information flow will bring about
changes in work patterns and changes in people's ability to exercise
professional expertise. These changes must come from prudent and deliberate
planning by the user community rather than from external organizations.
IMAC is "my problem" for everyone and affects many people in health care
organizations. Everyone has different and often competing interests. As
stated earlier, changes in information flow bring about changes in power that
may produce strong reactions. IMAC technology may intimidate poorly
informed parties.

References

Boehme J.M. ,Chimiak W. ,Choplin R., Maynard C.D. ; 1991," Operational
Infrastructure for a Clinical Picture Archiving and Communication System" SPlE
Medical Imaging v: PACS Design and Evaluation. vol. 1446, pp. 312-317.

Huang H.K., Ratib O.,Bakker A.R.,Witte G.,1991," Picture Archiving and Communication
Systems in Medicne", NATO ASI Series, Springer Verlag. , Vol F74

Mattheus R. ,Temmerman Y.,Verhellen P, Osteaux M. ; 1991" Management system for a
PACS network in a hospital environment", SPlE Medical Imaging v: PACS Design and
Evaluation. vol. 1446, pp. 341-351.

Mattheus R.; " Standardization in medical imaging, 1991," Health Technology Standards,
S. W. Gunn, NJ. O'Riordan, Eds.,IEC/lSO Switzerland. pp. 541-549.

Mattheus R, Moyson F, Temmerman Y , Osteaux M , 1990, Hospital Integrated Picture
Archiving and Communication System (HIPACS):A European Project; Symposia
Foundation SCAR. 396-404.

Mun S.K., Beason H., Elliot L.P., Gohringer F., Saarinen A., Haynor D, 1989, "Total
digital department: implementation strategy". Proceedings Medical Imaging lll. SPlE
Vol. 1093, pp. 133-139.

Noothoven van Goor J., Pihlkjaer Christenses 1..; editors, 1992, Advances in Medical
In!ormatics;.Amsterdam, lOS Press.

Osteaux M., Bakker A., Bell D., Kofakis P., Mattheus R., Meyer-Ebrecht D., Van de Velde
R. ,Wendler Th., 1992; " Hospital Integrated Picture Archiving and Communication
Systems "; Springer-Verlag; ISBN 3-540-54592-1,

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

